Creating Consistent Scene Graphs Using a Probabilistic Grammar

Siddhartha Chaudhuri? Vladimir G. Kim? Niloy J. Mitra> Thomas Funkhouser!

'Princeton University 2Cornell University 3Stanford University “Toyota Technological Institute at Chicago >University College London

Tiangiang Liu' ixing Huang>*
qiang g g

Bed frame

(a) Input

(b) Output leaf nodes

Sleep area/ Bedroom
Bed and Window
supported group/
(X2) urtain
\) torage
turage area
Bed area
N/} Pillows/ Door set/ Door set/
Pillow Door
<
Bed Mattress Shelf Closet Closet N
Cabinet
frame group/ group/ group/ roup/
shelf Closet Closet 8rOUP.
Cabinet

(¢) Output hierarchy

Figure 1: Our algorithm processes raw scene graphs with possible over-segmentation (a), obtained from repositories such as the Trimble
Warehouse, into consistent hierarchies capturing semantic and functional groups (b,c). The hierarchies are inferred by parsing the scene
geometry with a probabilistic grammar learned from a set of annotated examples. Apart from generating meaningful groupings at multiple
scales, our algorithm also produces object labels with higher accuracy compared to alternative approaches.

Abstract

Growing numbers of 3D scenes in online repositories provide new
opportunities for data-driven scene understanding, editing, and syn-
thesis. Despite the plethora of data now available online, most of
it cannot be effectively used for data-driven applications because it
lacks consistent segmentations, category labels, and/or functional
groupings required for co-analysis. In this paper, we develop algo-
rithms that infer such information via parsing with a probabilistic
grammar learned from examples. First, given a collection of scene
graphs with consistent hierarchies and labels, we train a probabilis-
tic hierarchical grammar to represent the distributions of shapes,
cardinalities, and spatial relationships of semantic objects within
the collection. Then, we use the learned grammar to parse new
scenes to assign them segmentations, labels, and hierarchies con-
sistent with the collection. During experiments with these algo-
rithms, we find that: they work effectively for scene graphs for in-
door scenes commonly found online (bedrooms, classrooms, and li-
braries); they outperform alternative approaches that consider only
shape similarities and/or spatial relationships without hierarchy;
they require relatively small sets of training data; they are robust
to moderate over-segmentation in the inputs; and, they can robustly
transfer labels from one data set to another. As a result, the pro-
posed algorithms can be used to provide consistent hierarchies for
large collections of scenes within the same semantic class.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms

Keywords: scene understanding, scene collections

Links: ©DL fIPDF @ WEB mDATA & CODE

1 Introduction

The abundance of 3D scenes in online repositories offers valuable
input for a multitude of data-driven interfaces for exploring and
synthesizing novel scenes. Previous work offers tools for sketch-
based scene modeling [Xu et al. 2013], context-based object re-
trieval [Fisher and Hanrahan 2010], scene retrieval [Fisher et al.
2011], scene organization [Xu et al. 2014], and automatic scene
synthesis [Fisher et al. 2012]. Unfortunately, these interfaces re-
quire consistently and semantically segmented and annotated in-
put and thus cannot directly leverage the typical scenes available in
existing online repositories. For example, consider Figure 1a that
shows a scene downloaded from the Trimble 3D Warehouse [Trim-
ble 2012]. While this scene has polygons grouped into connected
components and a sparse grouping of connected components into a
scene graph hierarchy, many objects in the scene are not explicitly
represented in the scene graph (e.g., curtain, mattress), few of the
scene graph nodes are explicitly annotated with a semantic label
(e.g, “table”, “chair”, etc.), and the scene graph hierarchy is void
of any meaningful functional groups (e.g., sleeping area, storage
area). This (missing) hierarchy of functional groups is critical for
recognition of scene semantics at multiple scales and context-based
disambiguation of object roles (a coffee table is used differently
from a bedside table, even if the two are geometrically similar).

Our goal is to develop algorithms that build a consistent represen-
tation for the hierarchical decomposition of a scene into semantic
components. We achieve it in two stages. First, given a collection
of consistently-annotated scene graphs representing a category of
scenes (e.g., bedroom, library, classroom, etc.), we learn a proba-
bilistic hierarchical grammar that captures the scene structure. Sec-
ond, we use the learned grammar to hierarchically segment and la-
bel newly downloaded scenes. For example, for the scene depicted
in Figure la, we produce the scene graph shown in Figure 1b,c,
where every functional object has been separated into a leaf node,
annotated with a semantic label, and clustered hierarchically into
labeled semantic groups represented by interior nodes of the scene
graph. Such a representation is useful for applications that require
not only segmenting scenes into objects and clustering similar ob-
jects into semantic classes (e.g., chairs, beds, lamps), but also es-
tablishing functional roles and relationships of objects (e.g., dining
table, bedside lamp, table-and-chairs), which are critical compo-
nents of scene understanding.

http://doi.acm.org/10.1145/2661229.2661243
http://portal.acm.org/ft_gateway.cfm?id=2661243&type=pdf
http://www.cs.princeton.edu/~tianqian/projects/hierarchy
http://www.cs.princeton.edu/~tianqian/projects/hierarchy/code_and_data
http://www.cs.princeton.edu/~tianqian/projects/hierarchy/code_and_data

Achieving such a level of scene understanding is extremely chal-
lenging. Previous methods for predicting part segmentations
[Kalogerakis et al. 2010; Kim et al. 2013], correspondences
[Huang et al. 2011], and hierarchies [van Kaick et al. 2013] are
mainly designed for single objects (e.g., chairs), which exhibit sig-
nificantly less variability in the types, numbers, shapes, and ar-
rangements of objects in comparison to scenes (e.g., bedrooms).
Previous methods designed for scenes usually focus on parsing im-
ages [Zhao and Zhu 2013] and/or work only on special types of
layouts, such as building facades [Zhang et al. 2013].

In our setting, the grammar specification includes hierarchical gen-
eration rules, rule probabilities, distributions of object descriptors,
and spatial relationships between sibling nodes. These parameters
are learned from a set of manually and consistently annotated exam-
ple scene graphs, where consistency means that: i) all functionally
equivalent objects and groups are assigned the same label, and ii)
all hierarchical parent-child relations are the same across all scene
graphs.

The learned grammar is then used to parse new scenes so that la-
beled object hierarchies are consistent with the training data.

In comparison to previous work on probabilistic modeling of scenes
in computer graphics, a key aspect of our approach is that we
explicitly learn and leverage the hierarchical structure of scenes.
Prominent semantic and functional relationships exist at multiple
scales in most scenes. For example, in Figure 1, the bedroom de-
composes functionally into sleeping area and storage area, and
each area decomposes further into objects, such as pillow, bed, cab-
inet and so on. Since the types of objects, numbers of objects, and
spatial relationships amongst the objects are unique for each type
of area, representing the scene with a hierarchical representation
(probabilistic grammar) provides great advantages for scene under-
standing (see also Figure 3).

However, using a probabilistic grammar to represent hierarchi-
cal relationships within scenes poses several novel technical chal-
lenges. In particular, parsing arbitrary arrangements of three-
dimensional objects with a probabilistic grammar is a distinctly
different challenge from parsing one-dimensional text [Socher et al.
2011] or two-dimensional facades [Martinovi¢ and Van Gool 2013],
which allow exploitation of sequential and grid structures. The
space of all possible groupings is exponentially large and in-
tractable to explore exhaustively. Unfortunately, methods derived
for lower-dimensional patterns do not directly carry over. We de-
velop a new approach for 3D scene parsing, based on dynamic pro-
gramming for belief propagation in a pruned search space. Our
method binarizes the grammar, proposes a large set of candidate
recursive groupings based on spatial proximity, and efficiently min-
imizes an energy function to find the optimal parse tree. The proce-
dure effectively performs approximate MAP estimation of the most
probable output of the hierarchical model [Bishop 2006].

We use our method to semantically label several datasets drawn
from various publicly available scene repositories, including the
Trimble (Google) 3D Warehouse and the Sketch2Scene collection
[Xu et al. 2013]. Our experiments demonstrate that hierarchical
analysis infers more accurate object labels than (i) a descriptor-
based shape classifier that does not incorporate contextual infor-
mation, and (ii) an approach that uses both a shape classifier and
knowledge of spatial relationships, but no hierarchical structure. Of
particular note is the fact that we are able to better disambiguate
similar objects used in different functional roles, e.g., “study ta-
ble” vs “meeting table”, which is difficult to achieve without a rich
context model. Our results can be directly applied for a range of
applications including scene retrieval, organization, and synthesis.

2 Related Work

Joint shape analysis. Recently, there has been a growing interest
in data-driven shape analysis, which aims to aggregate information
from a collection of related shapes to improve the analysis of in-
dividual shapes. Significant progress has been made in the areas
of joint shape segmentation [Golovinskiy and Funkhouser 2009;
Huang et al. 2011; Sidi et al. 2011; Hu et al. 2012; Zheng et al.
2014] and joint shape matching [Nguyen et al. 2011; Kim et al.
2012; Huang et al. 2012; Kim et al. 2013; Huang and Guibas 2013].
However, these methods are designed for collections of individual
objects (e.g., chairs) and assume relatively small numbers of sub-
parts and largely consistent overall layouts. This assumption does
not hold for 3D scenes, which exhibit significantly greater variabil-
ity in type, number, and arrangements of sub-objects.

Hierarchical shape analysis. Several previous techniques demon-
strate the advantages of a hierarchical representation. Wang et
al. [2011] propose hierarchical decompositions of man-made ob-
jects into symmetric subgroups. However, their method does not
apply to general indoor environments where semantic object groups
are not necessarily symmetric. Van Kaick et al. [2013] present
a method that infers consistent part hierarchies for a collection
of shapes. The method takes as input a set of shapes, each pre-
segmented into primitive parts. Candidate part hierarchies are built
up by recursive grouping, and the set of hierarchies clustered by
similarity. Within each cluster, a representative hierarchy is used
as a template to re-parse the shapes. The method assumes that
the collection can be split into discrete clusters, where each clus-
ter contains shapes with essentially identical part hierarchies. This
assumption is often violated in 3D scenes, where each scene lay-
out is in general only partially similar to others, with correspond-
ing sub-layouts but no overall commonality. We use a probabilistic
grammar to model the different regions, at different scales, of dif-
ferent scenes with different rules of a common generative process.

Layout parsing In the computer graphics community, grammar-
based scene parsing has been an active research area. However,
most existing methods in this area have focused on parsing cities
[Teboul et al. 2013], buildings [Mathias et al. 2011; Boulch et al.
2013], and facades [Martinovi¢ and Van Gool 2013; Zhang et al.
2013; Wu et al. 2014], which exhibit high degree of geometric and
spatial regularity. The grammar definitions and parsing algorithms
being developed are typically specific to those application domains
and do not apply to the scenes considered in this paper.

In the computer vision community, several algorithms have been
proposed to parse images of indoor environments using annotated
3D geometry [Choi et al. 2013; Zhao and Zhu 2013]. While our
goal is conceptually similar to these works, our problem setting has
two main differences. First, the number of labels we consider is sig-
nificantly larger than that in previous approaches. Second, parsing
3D layouts creates both opportunities and challenges for model-
ing geometric and spatial variations. These differences necessitate
novel methods for learning spatial relationships, computing geo-
metric similarities, and pruning the parsing search space.

Inverse procedural modeling. Several researchers have also stud-
ied the problem of inverse procedural modeling: recovering a gen-
erative grammar from a set of shapes assumed to have self-repeating
hierarchical structures. For example, St’ava et al. [2010] derived
L-systems from plants; Bokeloh et al. [2010] discovered repeat-
ing units and connections to form a procedural model for shapes;
while, Talton et al. [2012] applied Bayesian Model Merging to in-
duce a compact grammar for a collection of shapes. These methods
are complementary to ours: they focus on learning a grammar from
existing training data for the purpose of shape synthesis, instead of
trying to derive structure for novel data.

Grammar learning
Section
4.2

Consistent
labeled
hierarchies

Probabilistic
grammar

Scene parsing
e
An over-segmented
unlabeled scene

A labeled hierarchy
with segmented objects
at leaf nodes

Section 5

Figure 2: Flow chart of our approach. We learn a probabilistic
grammar from consistently annotated training hierarchies. We then
leverage this grammar to parse new scenes (which might include
over-segmented objects). The output is a labeled hierarchy consis-
tent with the grammar and assigned a high probability by it.

Synthesis with probabilistic models. Our work is also related to
works on generating new shapes and scenes with data-driven prob-
abilistic modeling. Chaudhuri et al. [2011] and Kalogerakis et al.
[2012] train generative models of component-based shape structure
from compatibly segmented and labeled models for shape synthe-
sis, while Fisher et al. [2012] and Yeh et al. [2012] characterize
spatial relationships among objects in 3D scenes for scene synthe-
sis. Although these models are very effective for synthesis, they are
not applicable to segmentation and labeling of novel scenes, and do
not have a rich representation of hierarchical context. As we show
in our evaluations, hierarchical contexts can greatly aid recognition
tasks and improve accuracy.

3 Overview

The main objective of this work is to automatically create consis-
tent annotated scene graphs for a collection of related scenes. To
achieve this goal, our system starts by learning a probabilistic gram-
mar from a training set of annotated 3D scenes with consistent hi-
erarchical structure. Then, given a new input scene described by
unlabeled non-semantic scene graph, such as the one presented in
Figure 1a, we use the learned grammar to produce a semantic hier-
archical labeling of a scene with objects at the leaves.

Our hierarchical representation and analysis tools are motivated by
the observation that semantic and functional relationships are often
more prominent within some subregions or subgroups of objects.
For example, consider the library scene in Figure 3. It contains
several meeting and study areas, where each area provides a strong
prior on spatial relationships between the objects, and types and
numbers of the objects. In particular, meeting area is likely to have
chairs arranged so that people could face one another, while study
area is likely to provide more personal space on a desk (and thus,
would have fewer chairs). In addition, hierarchy provides the nec-
essary context to distinguish functional categories of shapes that
otherwise have very similar geometry such as meeting and study
chairs.

Our approach is defined by two stages. In the first stage, we learn a
probabilistic grammar from a set of example scenes. In particular,
given a set of consistently annotated hierarchical scene graphs as
the training data, we produce hierarchical production rules, produc-
tion probabilities, distributions of object descriptors and spatial re-
lationships between sibling nodes, which define our grammar (see
Section 4). Then, in the second stage of our pipeline, we use the
learned grammar to compute consistent scene graphs for novel 3D
scenes. We assume that the new scenes come from an online repos-
itory, and thus unlikely to have semantic annotations or consistent
scene graphs. A typical scene from a Trimble 3D Warehouse is

eeting chair
(xa)

Study chair
(X2)
™~

P~ -
(4 Library’T:" '
Study area /\ Meeting area

S
O v 'l
R//{ 7 Study desk
(b) Output hierarchy

Meeting table

(a) Input scene

Figure 3: An example library scene. By grouping objects, we are
not only able to detect interesting intermediate-level structures, e.g.
study area and meeting area, but also distinguish objects based on
their functionalities, e.g. study chair and meeting chair.

missing some important hierarchical nodes, has nodes that corre-
sponds to meaningless groups, does not have objects as leaf nodes,
since it further subdivides them into meaningless geometric parts
(which we refer to as an over-segmentation problem). We solve the
challenging problem of matching these geometry soups to mean-
ingful objects, and then organizing the objects into consistent hier-
archies by using an efficient dynamic programming algorithm (see
Section 5).

4 Probabilistic Grammar

In this section, we first define the probabilistic grammar, and then
describe how we learn the grammar parameters from annotated
training data.

4.1 Grammar specification

We define an attributed, non-recursive, probabilistic grammar G
represented by a tuple:

G=<L,R,P> 1)

where L, R define the topology of the grammar, and P are its prob-
abilistic parameters. We model G to be non-recursive as object
groups in indoor scenes are not expected to be functionally equiva-
lent to any of the group’s components.

Labels. The label set L is a list containing a label for each object
category (e.g., bed, chair) and object group (e.g., sleeping-area,
table-and-chairs).We include a special label w that denotes the ax-
iom of G. We also include a special label for each object category
that denotes a non-semantic subpart of the complete object, such
as the curtain pieces in Figure 1. Introducing these labels helps
us parse oversegmented scenes where the leaf levels of input scene
graphs are below the object level.

Rules. The rule set R comprises production rules of the gram-
mar. Each production rule 7 € R is in the form of [— A, where
l € L is the left-hand-side label, and A is the set of right-hand-side
labels. For example, a production rule could be:

bed — bed-frame mattress.
Since our grammar is non-recursive, A should not include ! or any

label that has [in its expansion. In other words, the labels L can
always be topologically sorted.

Probabilities. The parameters P include production probabili-
ties and attributes. The probability of a production rule I — A
is the product of two terms. The derivation term Py(l) denotes
the probability that a non-terminal with label [is composed of sub-
objects according to the rule, given its parents. The cardinality term
Peaa[l, 7](7) denotes the probability that a node with label I, ex-
panded according to the rule, has exactly ¢ children labeled r. We
represent the distribution Peya[l, 7] (7) by recording probabilities for
four possible cardinalities: ¢ = 1, 2, 3, 44, where 4+ denotes car-
dinalities of 4 or greater. The purpose of the cardinality term is to
avoid introducing a new production rule for each combination of
child labels and cardinalities. Instead, A = RHS(/) exhaustively
lists all possible children of /, and Peaq assigns cardinality prob-
abilities independently to each child. For example, the observed
productions:

storage-area — cabinet trunk

storage-area — closet trunk
are combined into a single production:
storage-area — cabinet closet trunk.

Thus, our learned grammar has exactly one rule for each left-hand
label, with independent cardinality distributions for each right-hand
label. The purpose of this relaxation is to generalize in a reasonable
manner from a small number of training examples. For instance,
in the above example, we generalize to include storage areas with
both cabinets and closets, which is not an uncommon scenario.
While this relaxation can theoretically miss some co-occurrence
constraints, we found it gave good results in practice.

With this setup, we define the probability that a proposed node x in
a parse tree, with children x.children, matches rule [— X as:

Pyroa(x) = Py (x.1abel)

2
X HTG)\ Prara[.1abel, 7] (Zyez.children 1y<labelzr) @
where z is a node in the parse tree labeled as x.label with a set of
children x.children, and 1 is the indicator function.

Attributes. We identify two types of attributes that are important
for scene understanding: geometry attributes Ay which describe
the shape of objects, and spatial attributes A, which describe the
relative layout of objects in a group. For example, in a library scene
such as the one in Figure 3, A, would help in distinguishing tables
and chairs since they have distinctive geometry, and A, would cap-
ture the distinctive spatial arrangement of chairs in a meeting area
in contrast to a study area.

A geometry attribute Ay is associated with each label [€ L
and represented as a multivariate normal distribution over 21-
dimensional shape descriptors Dg4. The descriptor is described in
detail in Appendix A. We assume that the individual features in
the descriptor are independent, and model the distribution of the 5™
feature with a Gaussian GG; ;. Given a new node x, we estimate the
probability of it being labeled ! via the geometry attribute Ag[l]:

Pyt =] B S <_W> 3)

) 202 .
=101 V2TOLi Jj

,%

where o;; and p;; are respectively the mean and the variance of
G, and Dy ;(x) is the ™ component of D, ().

A spatial attribute A, describes a probability distribution over ob-
ject layouts. We assume that objects that appear in the same group

in the hierarchy have a stronger prior on their relative spatial rela-
tions. Thus, we only capture A, for label pairs that are siblings on
the RHS of a rule: the attribute is conditional on the LHS label. To
generalize from sparse training data, we factor the joint distribution
of the layout of a group of objects into a product of pairwise lay-
outs. We define a 7-dimensional descriptor D (z, y) that describes
the pairwise relationship of two nodes = and y. This descriptor is
also described in detail in Appendix B. Intuitively, the descriptor
captures support and vertical relationships, horizontal separation,
and overlap between objects.

Note that these pairwise relations are typically not distributed
around a single mean value. For example, the spacing between
all pairs of chairs arranged evenly around a table jumps discretely
as the table grows larger and accommodates more chairs. Thus,
we use kernel density estimation [Parzen 1962], a non-parametric
technique, to represent the probability distribution. For each triplet
of labels [, ., l,, where [, is the parent of [, and [, according
to a grammar rule, we find matching parent-child triplets p, x, y in
training scenes, and store the pairwise descriptor of each such pair
x,y in the set W(l,, ., 1,]. As for the geometry attribute, we as-
sume the individual features vary independently. The i™ dimension
of each exemplar descriptor w in the set is associated with a local
Gaussian kernel K, ; centered at w that describes the distribution
in its proximity. The overall probability at any point in the descrip-
tor space, for any pair of sibling objects z, y, is the product of the
sums of these 1D kernels:

Ps(lp,lzuly7w7y): H Z

i=1..7 weW([lp,la,ly]

By taking the product over sums, instead of the sum over products,
we again encourage generalization from a few examples.

4.2 Learning the grammar from consistent labeled hi-
erarchies

Scene labeling. Given a collection of 3D scenes from a public
repository with their default (possibly non-semantic) scene graphs,
an annotator builds consistent hierarchies for the scenes. We in-
structed the annotator to follow the following four steps:

1. Identity leaf-level objects in each scene either by selecting a
node in the existing scene graph or by grouping multiple non-
semantic nodes to form an object.

2. Provide a label for each object in a scene.

3. Group objects that belong to the same semantic group and
provide a group label that is consistent across all scenes. This
step is performed recursively until only one group (the axiom)
is left.

4. Summarize the resulting annotations in a form of a grammar.
The annotator is presented with all production rules and is
asked to remove redundancies in the grammar and potentially
relabel the scenes that include these redundancies. This step
is introduced to favor consistent annotations after all scenes
are labeled.

In our experiments, the annotation took about 15 minutes per scene.
The first step was only required for over-segmented scenes and
could take up to 30 minutes for a scene with 300 segments.

Grammar generation. The set of all unique labels in the training
scenes defines L. For each non-terminal label [€ L, we create
arule (I — A) € R, where A concatenates all labels that act as
children of [across all scenes, generalizing from the individual ob-
served productions. The derivation probability P, and cardinality

probability Pe.q of each rule are directly learned from occurrence
statistics in training data.

We then proceed to compute the geometric and spatial attributes.
The means and variances of geometry attribute Gaussians are es-
timated from the set of descriptors of observed instances of each
label. The kernel bandwidths (variances) of spatial attributes, for
each pair of observed siblings z, y are chosen differently for each
dimension, based on the type of relation that we expect to cap-
ture. In particular, for dimensions describing vertical separations,
we predefine a small bandwidth of 7.5cm since we expect sup-
port and co-planarity relations to hold almost exactly up to mi-
nor misalignments introduced by a modeler. For spatial rela-
tions on the ground plane, we estimate the bandwidth as 0.2 x
min{z.box.diagonal, y.box.diagonal }, where a.box.diagonal is the
bounding-box diagonal of a, since we expect the variance in these
to be proportional to the object size. For overlap-related dimen-
sions, we predefine a tiny bandwidth of 0.05cm, since we generally
do not expect objects to intersect.

5 Scene parsing

Given a learned grammar G and an input scene graph .S, our goal
is to produce an annotated hierarchy H on scene geometry that is
a valid parse of S according to G. We first extract the set of leaf
nodes Siear from S, which forms a partition of the scene. These
leaves do not necessarily correspond to semantic objects or groups.
We assume that H has S as leaf nodes, assigning them special
“object-subpart” labels from the grammar in the case of overseg-
mentation.

In the rest of this section, we formulate the objective function that
is equivalent to maximizing P(H|S, G) (Section 5.1), and propose
an efficient dynamic programming algorithm to find the optimal
hierarchy (Section 5.2).

5.1 Objective function

Given a grammar G and an input scene .S, our goal is to produce
an annotated hierarchy H* = arg maxy P(H|S,G). We rewrite
P(H|S,G) using Bayes’ rule, dropping the P(.S) in the denomina-
tor because it does not affect the optimal solution:

P(H|S,G) x P(H|G) - P(S|H,G). ®)

P(H|G) is the product of production probabilities of rules Pprod
(Equation 2) in H:

P(H|G) =] Poroa(z)"™ (6)

zeH
where T'(x) is a weight that is used to compensate for decreas-
ing probability values as H has more internal nodes. We define

T(x) =1 for leaves and internal nodes that have a single child,
and T'(x) = |z.children| — 1 for all others.

P(S|H,G) is the data likelihood, which is the probability of S be-
ing a realization of the underlying parse H. We define the data
likelihood of scene as a product of per-node likelihoods:

P(S1H,G) = [] Pol@)™® P} ()7 @)
reH

where the geometry term P, is defined in Equation 3 and the full
per-node spatial probability P; (z) is derived from the pairwise
terms P (Equation 4):

> p.gca children 108 Ps (2.1abel, p.label, g.1abel, p, q)
|z.children| x (]z.children| — 1)

log Ps* (l‘) =
(®)

Our final objective function is the negative logarithm of Equation 5:

E(H) =Y E(z) ©)

€ H

where E(x) = —T () log (Pproa(z) Py (z) P (x)).
5.2 Algorithm

The main challenge in optimizing Equation 9 is the size of the solu-
tion space. For example, if there are n nodes at the leaf level, even
a single group can be formed in 2" — 1 different ways. Previous
approaches such as Zhao and Zhu [2013] use simulated annealing,
which requires a good initial guess and typically takes a long time
to converge. While this approach is feasible for a small number of
labels (e.g., 11 labels are used in the bedroom grammar of [Zhao
and Zhu 2013]) we had to develop an alternative technique to han-
dle the typical scenes available in online repositories (e.g., there are
132 semantic labels in our grammar for the bedroom scenes pre-
sented in this paper).

Our idea is to conduct a dynamic programming optimization. We
start by rewriting the objective function recursively, as

E(H) = E(Root(H))
E(x)=E@@)+ Y.

yEx.children

E(y) (1o

where E(x) represents the total energy of the subtree rooted at node
x, and Root(H) is the root node of H. This recursive formulation
naturally leads to a dynamic programming optimization where we
choose the optimal tree structure and labels in a bottom-up manner.
We define a state in our dynamic programming for a node x and a
label I, and we store a variable Q(x, [) for the state that represents
the optimal energy of the subtree rooted at node = and label [. Given
this definition, E(H) = Q(Root(H), w).

Since it is impractical to conduct dynamic programming algorithm
directly due to the large search space, we propose two relaxations
that lead to an approximated but efficient solution. First, we pre-
compute a set of good candidate groups and assume that the hierar-
chy only includes nodes from these groups. Although this reduces
the search space significantly, the number of ways to map a col-
lection of nodes to the right-hand-side of a grammar production is
still exponential if the branching factor of the grammar is not lim-
ited. Thus, inspired by grammar binarization techniques in natural
language processing [Earley 1970], we convert each rule with more
than two right-hand labels into a set of rules with only one or two
children. This reduces the number of states in a dynamic program-
ming solution from exponential to polynomial in n. After we get a
valid parse with the binarized grammar, we transform it to a valid
parse with the original grammar. Although there are no guaran-
tees that this procedure produces the optimal parse with respect to
the original grammar, our experiments demonstrate that it produces
semantic hierarchies with high accuracy.

In summary, our scene parsing works in three steps. First, it creates
candidate nodes based on spatial proximity (Section 5.2.1). Next, it
binarizes the grammar (Section 5.2.2). Finally, our method finds the
optimal binary hierarchy with an efficient dynamic programming
algorithm and then converts it to a valid hierarchy of the original
grammar (Section 5.2.3).

5.2.1 Proposing candidate groups

Given a scene S with a set of leaves Sier, our algorithm narrows
down the search space by proposing a set of candidate groups C

from which we build the hierarchy H. Each group X € Cis a
subset of leaves in Sicaf, and our grouping heuristic for constructing
X stems from the assumption that only shapes that are close to one
another produce semantically meaningful groups.

We iteratively build the set of subsets C, increasing the cardinality
of subsets with each iteration. In the first iteration, we set C; =
Seat, 1.€., all subsets of cardinality 1. In iteration k, we enumerate
all subsets of cardinality & that can be created by merging pairs of
subsets in C_1. Each subset is scored using a compactness metric
M that favors tight arrangements of nearby objects. Specifically,
for a given subset X, we build a graph A on X where the weight
of an edge is the distance between bounding boxes of its endpoints.
M(X) is the cost of the minimum spanning tree of A. We add the
¢ most compact new subsets to Cy. The iterations terminate when
k = |Siar|. Note that this procedure guarantees that the maximal
size of C is O(C\Sleﬂf|2). We set ¢ = 5 in our experiments.

5.2.2 Grammar binarization

The goal of this step is to produce a grammar that is similar to
the input grammar, but has a branching factor < 2, i.e., each rule
has one or two right-hand labels. We derive the binarized grammar
G> =< L/, R/, P’ > from the original grammar G =< L, R, P >
by splitting each rule into multiple equivalent rules. First, for each
label | € L we add two labels to L': [itself, which we call a full
label, and I’, which we call a partial label of I. Then, we decompose
each production rule (I — A) € R into a set of rules with at most
two right-hand labels:

Uk foreachk € A

jk foreach j, k € A

k foreach k € \

(11)
Uk foreachk € A

jk foreach j, k € A

A

Since the binarized grammar lacks the cardinality term, we intro-
duce recursion to represent multiple instances of the same object.
There are many possible binarization expansions that would lead
to a language that is equivalent to the original grammar, each with
a different number of rules and a different number of states to be
searched when parsing. We did not aim to minimize the number of
rules, since more rules lead to more states in the dynamic program-
ming algorithm, thus the algorithm is more likely to find a lower
energy solution. We will discuss more details in Section 5.2.3.

5.2.3 Dynamic programming

Now we describe an efficient dynamic programming algorithm for
minimizing the Equation 9. Note that given the two relaxations de-
scribed above, the solution of our algorithm can only approximate
the optimal solution.

In order to define the state transfer equations, we introduce an aux-
iliary variable for each state [z,], K(x,!), which represents the
annotated partition of into nodes with full labels that produces
Q(z,1). K(z,!) is an array of pairs, and each pair consists of a
descendant of x and its label. Now we can define the state transfer

Bedroom

Cabinet Nightstand
Storage Sleep area

ﬂ area

N|ghtstand
Cabinet Cabinet group/
group/ group/Nightstand Bed

Cabinet Cabinet ()EZ)/\' Pillows
Mattress

Bed frame Mattress Pillow Pillow

Bed and
supported

Bed frame

(a) Ground-truth hierarchy (b) Ground-truth leaf nodes

Figure 4: Each test data set includes (a) a manually-created hi-
erarchical grammar and (b) a set of scene graphs with manually-
labeled nodes representing a “ground truth” parse of the scene.

equations as follows,

Q(z,1) = min{Qu(z
Qu(z,l) = min

I’eRHS(I)

7l)7 Qb(xv l)}
Es(z, 1, K(z,1") + S(z,1")

Qb(mJ) = min EQ(:EJvK(ny) UK(Zle))
y,z€Part(z) (12)
Lyl ERHS(1)

+ S(y,ly) + S(z,12)
Sh= Y. Q)

[y,ly]EK(z,l)

where @, is the optimal energy of applying grammar rules with a
single right-hand child (I — & in Equation 11), and Q)5 is the opti-
mal energy of applying grammar rules with two right-hand children
(all other rules in Equation 11). Part(z) is the set of partitions of
X into two subsets from C. FEj is similar to E, but nodes and
labels are specified in the argument list. RHS(1) is the set of right-
hand-side labels derivable from [in Go. S(z,1) is the total energy
of partition K(z,). K(z,1) can be updated accordingly given the
optimal I', y, z, l,, [, for computing Q(z, [).

Note that there are not guarantees that Q(x, [) is the optimal energy
of the subtree rooted at node = and label [. If K(-, -) represents the
optimal K (-, -), and {[v:,ly,], [2:, ;] } represents all binary parti-
tions of K(x,1), Q(z,!l) is suboptimal when none of y;, z; is in
Part(z), or none of K(yi,ly,) U K(zi,1,) constructs K(z,1).

Redundancy in grammar binarization (Equation 11) leads to a larger
set of {[yi, ly,], [2:, l=;]}, which is likely to enable our algorithm to
find a lower energy solution. As we will show in Section 6, we can
always find solutions with reasonably low energies (i.e. equal to or
lower than the ground-truth hierarchy) in our experiments.

Given the state transfer equations, the only remaining problem is
to compute Q(z, 1) in the correct order. To ensure that the values
on the right-hand-side of the binary term Qp(z,!) are available,
we compute Q(z,!) in the order of increasing cardinality of X.
This ensures Q(y,) and Q(z,.) are computed before Qp(z,1).
Among the states (x, [) with the same x, we compute Q(z, [) based
on the topological order of label [in Go, which ensures Q(z,1’) is
available when computing Q. (z,) if I’ is derivable from I.

Finally, we transform the optimal binary hierarchy arg min E(H)
to a hierarchy in the original grammar G by removing all nodes with
partial labels and attaching their children to their parents.

6 Results

6.1 Datasets and evaluation methods

Datasets: We tested our algorithms on scene graphs represent-
ing three types of scenes downloaded from the Trimble 3D Ware-
house: Bedroom (77 scenes), Classroom (30 scenes), and Library
(8 scenes).

For two types of these scenes, we additionally created small
datasets with simple scene graphs representing 17 bedrooms and
8 libraries, respectively. These scenes have only the basic objects
commonly found in such scenes and thus serve as a “clean” dataset
for testing the core elements of our algorithms independent of the
noise found in real-world data sets.

For each scene graph in all five of these data sets, we enforced a
canonical scaling (one unit equals one inch), removed polygons rep-
resenting walls and floors, and removed scene graph nodes repre-
senting small parts of objects. While these steps could be performed
automatically, we performed them manually for this experiment to
avoid confounding our main results with errors due to preprocess-
ing heuristics.

Evaluation methods: To evaluate the results of our scene parsing
algorithm, we manually specified a hierarchical grammar for each
type of scene (Figure 4a) and manually assigned a ground-truth
parse for each input scene graph (Figure 4b). Then, we tested our
parsing algorithms in a series of leave-one-out experiments. Specif-
ically, for each scene, we trained a grammar on the other scenes
of the same type, used that grammar to parse the leaf nodes of
the left-out scene, and then measured how accurately the topology
and labels of the predicted scene graph match those of the ground
truth parse. Note that since the resulting scene graphs are all valid
parses of the probabilistic grammar they have consistent hierarchi-
cal parent-child relations.

To measure the label consistency of a predicted parse with the
ground truth, we used precision, recall, and F; score (F-measure)
statistics. Since the interior nodes of the predicted scene graph can
be different than those of the ground truth for the same scene, calcu-
lation of the standard form of those metrics is not possible. Instead,
we computed measures that account for the fractions of surface area
labeled correctly. For example, to compute precision for a particu-
lar label I, we computed the fraction of all surfaces in the subtrees
rooted at nodes predicted to have label [that appear in a subtree
rooted at a node labeled [in the ground truth. Our final results
are averages weighted by surface area over all label types and all
scenes.

6.2 Benefit of hierarchy

Hierarchical parsing results. In our first experiment, we evaluate
how well the scene graphs predicted by our hierarchical parsing al-
gorithm match the ground-truth data. Figure 6 shows the results:
the height of each bar indicates the average F score for a different
dataset, where 1.0 is perfect and higher bars are better. On aver-
age, our method achieves almost 100% accuracy on small datasets,
and 80% on the Trimble 3D Warehouse datasets. Example parsing
results can be seen in Figure 10 (a complete set of results can be
found in supplemental materials). These examples show that our al-
gorithm is able to create functionally relevant hierarchies for many
different types of scenes, even though the input scene graphs have
very little hierarchy, if any at all. For example, it correctly parses
the sleep areas (bed, nightstand, etc.) and storage areas (closets,
cabinets, etc.) in the three bedroom scenes in the top row; and, it
differentiates teacher areas from student desk areas in the classroom
shown in the fourth row, even though the shapes of the individual

bedroom

Console
table

Chair

Bed
frame

Console
table

Nightstand

library
Shape only

f
Reception)

Qhair

/ 3 Chair
Bed
frame

Ours

Figure 5: Comparison to alternative methods. Classifying objects
only by their geometry (first row) cannot differentiate between ob-
Jects of similar shape in different categories, e.g. short bookshelf
and study desk, or console table and study desk. Even if contextual
information is leveraged, relations among objects can be wrongly
interpreted (e.g. short book shelf and study chair (second row left),
chair and bed (second row right)) in the absence of a hierarchy
of semantic contexts at various scales. Our method exploits such
a hierarchy to yield more accurate object recognition. The inset
images of the third row show the object groups predicted by our
method. Black labels are correct, and red labels are incorrect.

objects (desk and chairs) are geometrically very similar. Incorrectly
labeled nodes are highlighted in red — errors usually occur due to
limited amounts of training data.

1

a

« 0.4

o

° [:I . . . r
0 T T

Small-library Small-bedroom Library

Bedroom Classroom

Figure 6: Performance of object grouping. Our method achieves
almost 100% on illustrative datasets, and ~80% on Trimble 3D
Warehouse scenes.

Comparison to alternative methods. In a second experiment, we
test whether parsing scenes with our hierarchical grammar provides
more accurate object labels than simpler alternatives. To test this
hypothesis, we compare our results with the following two alterna-
tive methods:

e Shape only. This method selects the label that maximizes the
geometry term E, for each input node. It is representative
of previous methods that perform object classification based
solely on similarities of shape descriptors.

e Flat grammar. This method executes our algorithm using a
flattened grammar that has only one production rule that con-
nects all terminals directly to the axiom. The geometric and
spatial attributes of the flattened grammar are learned from
ground-truth flattened graphs. Thus, this method is represen-
tative of previous methods that leverage spatial context, but
not hierarchy, for object classification [Fisher and Hanrahan
2010; Fisher et al. 2011; Fisher et al. 2012; Xu et al. 2013].

Results are shown in Figure 7: each set of bars shows a comparison
of our method (blue bar on right) with the two alternatives running
on a given test dataset. Since the alternative methods predict labels
only for objects (i.e., do not produce hierarchy), we compare their
results only for labels predicted at leaf nodes by our algorithm.

From the results we see that methods based on parsing with our
probabilistic grammar (green and blue) outperform a method based
purely on matching shape descriptors. Moreover, we find that pars-
ing with a hierarchical grammar (blue) is better than with a flat
grammar (green). Figure 5 shows representative failures of alterna-
tive methods (highlighted with red labels). The method based only
on matching shape descriptors fails when geometries of different
object classes are similar (e.g., short book shelf vs. study desk in
the library example; console table vs. study desk in the bedroom ex-
ample). The method based on flattened grammars fails when spatial
relationships between objects are context dependent (e.g., the rela-
tion between the study chair and the short book shelf is wrongly
interpreted in the library example).

6.3 Generalization of our approach

Handling over-segmentation. In a third experiment, we test
whether our method is able to parse Bedroom scene graphs with
moderate levels of over-segmentation. In this test, the leaves of
the input scene graphs are not necessarily representative of basic
category objects, but instead can represent parts of objects as de-
termined by the leaf nodes of the scene graphs originally down-
loaded from the Trimble 3D Warehouse. We call this new data set
“Bedroom-oversegmented.”

This test is much more difficult than the previous one, because it
requires the parsing algorithm to determine what level of each in-
put scene graph represents the basic category objects in addition to
assigning labels and creating a meaningful hierarchy.

We compare the methods described above with a few changes. In

Flat grammar ¥ Ours

M Shape-only

Small-library Small-bedroom Library Bedroom Classroom

Figure 7: Performance of object classification. Using a hierarchi-
cal grammar clearly outperforms alternatives.

1
B Shape-only Flatgrammar ¥ Ours
0.8

I 4
5 0.6
a
To4

0 T T

All leaves Bed frame Mattress Nightstand Desk Chair

Figure 8: Performance on over-segmented bedroom scenes.
Our method significantly outperforms shape-only classification in
most object categories except mattresses, which are rarely over-
segmented, and can be distinguished from other classes based on
their distinctive geometry. Our method outperforms the “flat”
grammar, with spatial relations but no hierarchy, in all object cate-
gories except for chairs.

our method and the flat grammar method, the grammar is aug-
mented with an extra layer of labels at the bottom of the hierarchy
representing object parts (e.g., “part of a chair”). These new types
of labels are necessary to allow the parser to find an appropriate
“segmentation” of the scene by assigning them to over-segmented
nodes of the input scene graphs while grouping them into new inte-
rior nodes with basic object category labels.

Results of this experiment are shown in Figure 8, with the overall
results shown in the left set of three bars and results for individual
object labels shown to the right.

Not surprisingly, the shape-only method (red bars) performs the
worst. Since it does not parse the scene and therefore cannot create
new nodes representing groups of leaf nodes, it is unable to cor-
rectly label any objects not represented explicitly by a node in the
input scene graph. Also since it does not leverage spatial relation-
ships when assigning labels, it is difficult for it to distinguish some
object classes from others with similar shapes. Our parsing method
using a hierarchical grammar has better overall performance than
using a flattened grammar. This is because it better captures the
spatial and cardinality distributions specific to semantic groups of
objects represented by interior nodes of the grammar. For example,
without those cues, bed frame can be easily confused with bed, as
they share similar geometries and spatial relationships.

Parsing other datasets. In a fourth experiment, we test whether
our algorithm can learn a hiearchical grammar on one data set and
then use it to parse a different data set. For this test, we downloaded
the Sketch2Scene Bedroom dataset [Xu et al. 2013] and then parsed
each of the Bedroom scene graphs using the grammar learned our
Bedroom dataset. Since the Sketch2Scene dataset was constructed
by retrieval using keywords, it includes scenes that are obviously
not bedrooms, which were excluded from our experiments. Addi-
tionally, we excluded Sketch2Scene scenes that were very similar
(or duplicate) with any in our dataset. In the end, we were left with
90 scenes for testing.

We ran our parsing algorithm (and the two alternative methods)
trained on our Bedroom set to predict a scene graph hierarchy for
each of the 90 scenes in the Sketch2Scene bedroom dataset with-
out any change to the algorithm or parameters — i.e., the algo-
rithm was frozen and parameters learned before even looking at
the Sketch2Scene data for the first time.

To evaluate the results, we use the manually-specified ground
truth labels for all basic object category objects provided with the
Sketch2Scene dataset. Since the Sketch2Scene data has no hi-
erarchy, we evaluate our results only for leaf nodes. Since the
Sketch2Scene ground-truth label set is different from ours, we cre-
ated a mapping from our label set to theirs so that labels predicted

by our parser could be compared to their ground truth. Unfortu-
nately, the Sketch2Scene label set is coarser-grained than ours, of-
ten not separating functionally different objects with similar shapes
(e.g., nightstand, cabinet, and closet) are all mapped to one la-
bel called cabinet in the Sketch2Scene. This reduction of ground-
truth labeling granularity and the lack of hierarchy in the ground
truth hides key differences in the evaluation of our results, but we
use it none-the-less since it provides an objective evaluation of our
method with respect to a third-party data set.

As in the previous experiments, we compare the performance of our
hierarchical parsing algorithm to the shape-only and flat-grammar
methods. Results are shown in Figure 9. Note how the results for
this new data set are similar to the ones previously reported for the
leave-one-out experiment. Hierarchical parsing provides the best
average results overall (far right) and significant improvements for
most object labels (e.g., desk). This result verifies the robustness of
the algorithm to handle different input scene graphs.

Interestingly, the flat grammar method performs worse than shape-
only for several object categories. This is because spatial attributes
learned for pairs of objects within a scene are mixed in the flat
grammar (e.g., the spacing between desks and chairs is learned from
all pairs across the entire room rather than just the pairs within
the same study area). By leveraging hierarchy we can learn rela-
tions between objects that belong to the same group, and thus learn
stronger layout priors.

1

0.8 ¥ Shape-only Flat grammar ™ Ours
N
5 0.6
&
« 0.4
o
1
0
All leaves Bed Desk Cabinet Sofa Desk lamp

Figure 9: Parsing scenes in the Sketch2Scene dataset [Xu et al.
2010]. We reuse the grammar learned in Section 6.2 to parse scenes
in Sketch2Scene, and compare the performance to those of alterna-
tive methods. Using a flattened grammar is not effective because
spatial relations are not discriminatory enough without meaningful
object groups. Shape-only classification performs comparably to
our method in object categories where geometry is distinctive, but
is surpassed by our method when contextual information is impor-
tant for disambiguation (e.g. desk and bed).

6.4 Sensitivity analysis

Impact of training set size. We tested how the performance of our
algorithm is affected by the size of the training set. For each scene
graph, we trained a grammar on X % of the other scenes selected
randomly (for X = 10%, 40%, 70%, and 100%), used that gram-
mar to parse the scene, and then evaluated the results. Figure 11
shows that the results. From this test, it seems that training on ap-
proximately 40% of the scenes provides results approximately as
good as training on 100% in all datasets except for Library, which
has only 8 scenes in total.

Impact of individual energy terms. We ran experiments to show
the impact of each energy term on the final results by disabling each
one and re-running the first experiments. The results of this exper-
iment (Figure 12) suggest that the performance becomes worse if
we disable any of the energy terms. Interestingly, terms have dif-
ferent impact on different datasets. For instance, the geometry term
is more important in bedrooms, while the spatial and cardinality
terms are more important in libraries, probably because hierarchi-
cal structure is more prominent there.

100
90r
80r
701
60
50
40t

% F1 score

301 —©— Bedroom-oversegmented
20+ ~—O— Bedroom

—©— Library

10f —©— Classroom

0 1 1 1 1 n n n n
01 02 03 04 05 06 07 08 09 1
Fraction of training set

n s

Figure 11: Impact of size of training set. Labeling accuracy in-
creases on all datasets with more training examples.

Impact of optimization approximations. We next ran experi-
ments to evaluate the impact of approximations made by our pars-
ing algorithm to narrow the search space, i.e., proposing candidate
groupings based on spatial proximity and binarizing the grammar.

To evaluate the approximations, we compare the output of our algo-
rithm to the output of exhaustive search. Because the computation
complexity of exhaustive search is exponential in the size of in-
put, we do this comparison only for the small dataset of bedrooms,
where each scene contains no more than 10 nodes. The experiment
result in Figure 13 shows that our approximations are able to get
the globally optimal solutions in 16 out of the 17 cases. In the only
failure case, the candidate node selection algorithm misses one in-
ternal node in the ground truth. On average, exhaustive search takes
35 minutes for the scene with 10 leaf nodes, while our method takes
only 3 seconds.

We also evaluate the impact of our approximations on parsing the
Trimble 3D Warehouse scenes. Since it is impractical to get the
globally optimal solution for these scenes, we study the impact of
our approximations only with statistics gathered during the search.

First, to evaluate the impact of selecting candidate nodes based on
spatial proximity, we measure the fractions of internal ground truth
nodes that are not considered as candidate nodes by our algorithm
(Figure 13). The results show that the approximation misses very
few nodes for cases where the input scene graph is well-segmented
at the leaf nodes, but provides mixed results when the input is over-
segmented.

Second, to evaluate the impact of grammar binarization, we inves-
tigate how often our algorithm outputs a hierarchy with higher en-
ergy than the ground-truth hierarchy. If we consider only the exam-
ples where the ground-truth solution is included in our search space

1 ¥ Geometry off B Spatial relation off

Cardinality off W All on

Bedroom-
oversegmented

Classroom

Library Bedroom

Figure 12: Impact of individual energy terms on object classifica-
tion. Each energy term contributes to the overall performance in
each dataset.

Input Output leaf nodes Output hierarchy

Bedroom1

% Bedroom

§Ieep area
b
Paintings/ Storage Bed and
. Painting area supported
— 5

N v @

Ottoman Nightstand ;
group/ group/ B .

Closet - Closet 1\ o man Nightstand -

group/ group/

Closet Closet
Mattress o frame

Floor lamp ~ ‘wﬁedroom
P (‘_%\‘
Y " lt_est
w ‘)Gafea ' Vsleep

Floor

Bedroom?2

.

area
Jamp Storage area/
Closet group/ Bed and
Closet sypported
(x2) ,Nightstand
Desk group T
group/ 7& -
Desk Chair pT P;I.Iﬁws/
‘ = ant illow
o grou_p/ Table b &
Chair :
group/ Nightstandy, i o’ Bed
Table frame

Bedroom3
2 't’ Bedroom

‘%Ieep area

‘turage area

/\ Nightstand . AN

8 e S
Cabinet i

abine! N'Ehﬁmightstand

group/ group/

Bed frame

. o \
Cabinet Cabinet)
apine Pillows/ Bed pillows/
Pillow x Pillow

Bed frame Mattress

Classroom1
»” ' Classroom

e
Student’s

A’eacher’s desk area
> PN o
M area Door Window

N x3)
tudent’s ’ f w Iﬂ m

eacher’s

chair
Student’s Student’s Student’s

Blackboard
desk area/ desk chair chair
Teacher’s
desk
Library1
£
**‘@& WiLlibrary
s‘
,%eetin@ > .
/’ ‘table* * Meeting 2oum Meeting Wi Reception
e | area 9P area area
“ / Meeting
chair (X5) (x3)
ot Meeting
table
$ - g w 7
Meeting i ing Meeti Re‘;ePEmReceptim
chair table table chair es chair
(xa) (xa)

Figure 10: Examples of parsing results. We show the leaf nodes of the input scene graph (column 1), and the leaf nodes (column 2) and
hierarchy (column 3) output by our algorithm. Red labels indicate either wrong labels or incorrect segmentation. In column 3, to save space,
we merge a child with its parent if it is the only child, and use */’ to separate the labels of the child node and the parent node. Also to save
space, we use ‘X’ to represent multiple occurrences of the same geometry in the parse tree (note that we do not detect identical geometries in
our algorithm; this is only for visualization purposes). The input scenes of the top three examples are oversegmented.

2
aQ
]
=)
g = bedroom-oversegmented
3 bedroom
2 classroom
~——— library
0 I I I I I I T T T)
0 10 20 30 40 50 60 70 80 90 100

% Nodes missing from the hypothesis

Figure 13: Fraction of ground truth internal nodes missing from
the predicted hierarchies. The Y-value of each point on a curve de-
notes the fraction of scenes in which the number of missing ground
truth internal nodes is at most the X-value. For libraries, our algo-
rithm successfully proposes all ground-truth nodes, except one, in
the entire dataset. Oversegmented input scene graphs are in gen-
eral more challenging for our method.

N
=

&

+

4
4

%WW#+ "

ﬁ*#

o

I I)
50 100 150
Number of input leaf nodes

o

Running time (log of seconds)
>

o

Figure 14: Relationship between number of input leaf nodes and
running time on oversegmented bedroom scene graphs. Our method
scales reasonably well for complex scenes.

(85% of scenes), then there is only one case where our method pro-
duces a solution with higher energy than the ground-truth, which
indicates that grammar binarization is not significantly affecting the
accuracy of our final results.

Timing results. We measured the computational complexity of our
parsing algorithm on the Bedroom data set. Figure 14 shows the
result relating the number of input leaf nodes and the running time.
Our algorithm is far from real-time, but scales well for scenes with
large numbers of input leaf nodes.

7 Conclusion

This paper presents a method for parsing scene graphs using a hi-
erarchical probabilistic grammar. Besides this main idea, we of-
fer two technical contributions. First, we formulate a probabilis-
tic grammar that characterizes geometric properties and spatial re-
lationship in a hierarchial manner. Second, we propose a novel
scene parsing algorithm based on dynamic programming that can
efficiently update labels and hierarchies of scene graphs based on
our probabilistic grammar. Experimental results show that: i) the
hierarchy encoded in the grammar is useful for parsing scenes rep-
resenting rooms of a house; ii) our algorithms can be used to simul-
taneously segment and label over-segmented scenes; and iii) the
grammar learned from one data set can be used to parse scene
graphs from a different data set (e.g., Sketch2Scene). To the best of
our knowledge, this is the first time that a hierarchical grammar has
been used to parse scene graphs containing 3D polygonal models
of interior scenes. So, the highest-level contribution of the paper is
demonstrating that this approach is feasible.

Our method is an early investigation and thus has several limitations
that suggest topics for future work. First, our current grammar does
not capture the correlations between co-occurrences of sibling la-
bels. For instance, couch and chair are interchangeable in a rest
area, so the occurrences of them are highly related. It would be in-
teresting to augment the grammar with higher-order relationships,
which might be leveraged to improve prediction accuracy. Second,
our algorithm learns the probabilistic grammar from labeled exam-

ples, which may not always be available. It would be nice to de-
velop methods to detect repeated shapes and patterns in scenes and
use them to derive grammars automatically, although it would be
hard to guarantee the semantic relevance of such grammars. Fi-
nally, the paper focuses mainly on methods for representing and
parsing scenes with a grammar. Although there are several obvi-
ous applications for these methods in computer graphics, including
scene database exploration, scene synthesis, semantic labeling of
virtual worlds, etc., it would be nice to explore applications in com-
puter vision, robotics, and other fields.

Acknowledgments

We acknowledge Kun Xu for distributing Sketch2Scene dataset.
We thank Christiane Fellbaum, Stephen DiVerdi, and the anony-
mous reviewers for their comments and suggestions. The project
was partially supported by the NSF (IIS-1251217, CCF-0937137),
an ERC Starting Grant (StG-2013-335373), Intel (ISTC-VC),
Google, and Adobe.

A Shape Descriptors for Geometry Attributes

To build the shape descriptors, we uniformly sample 1024 points
on each shape, and then compute the following values:

e Dimensions of the axis-aligned bounding box of a shape (8 di-
mensions). We assume that z is pointing up, and we compute
Zmin, Zmax » ly = Zmax — Zmin, lh = maX(xmax — Zminy Ymax —
ymin)7l2 :min(mmax - _ymin)7l2/llylz/l17lz/l2

e Descriptors from PCA analysis (7 dimensions). We per-
form PCA analysis for all points on the ground plane and
on the upward, z-axis, separately. We denote the mean of
z values by zmean, Variance on z axis by V., and variances
on the ground plane by Vi, V2(Vi > V3), and we include
Zmean Vl; ‘/25 Vz: ‘/Q/Vla VZ/V17 VZ/VQ'

Lminy Ymax

e Descriptors of ‘uprightness’ (2 dimensions). We compute the
fraction of points that have “up” as the principle direction of
their normal. We denote the fraction by r and include r and
1 — r as features.

e Point distribution along the upward direction (4 dimensions).
We compute a 4-bin histogram of points according to their z
coordinates.

B Layout Descriptors for Spatial Attributes

The relative layout of two nodes x and y is described with a 7-
dimensional descriptor D (z, y):

Dy(z,y) = [T Zmin — Y-Zmin,
T-Zmin — Y-Zmax,
T-Zmax — Y-Zmin,
Dist(z.box.center, y.box.center),
Dist(z.box, y.box),
Area(z.box Ny.box)/Area(x.box),
(

Area(x.box N y.box)/Area(y.box)]

where z.box is the bounding box of the object z on the ground
plane, Dist is the distance between two points or two bounding
boxes. Intuitively, 1-3 represents support and vertical relationships,

4-5 represents horizontal separations, and 6-7 represents overlaps
between objects.

References

Bi1sHOP, C. M. 2006. Pattern Recognition and Machine Learning.
Springer-Verlag New York, Inc.

BOKELOH, M., WAND, M., AND SEIDEL, H.-P. 2010. A connec-
tion between partial symmetry and inverse procedural modeling.
ACM Trans. Graph. 29, 4, 104.

BOULCH, A., HOULLIER, S., MARLET, R., AND TOURNAIRE,
0. 2013. Semantizing complex 3D scenes using constrained at-
tribute grammars. In Computer Graphics Forum, vol. 32, Wiley
Online Library, 33-42.

CHAUDHURI, S., KALOGERAKIS, E., GUIBAS, L., AND
KOLTUN, V. 2011. Probabilistic reasoning for assembly-based
3D modeling. In ACM Trans. Graph., vol. 30, ACM, 35.

CHoI1, W., CHAO, Y. W., PANTOFARU, C., AND SAVARESE, S.
2013. Understanding indoor scenes using 3D geometric phrases.
In CVPR.

EARLEY, J. 1970. An efficient context-free parsing algorithm.
Communications of the ACM 13,2, 94-102.

FISHER, M., AND HANRAHAN, P. 2010. Context-based search for
3D models. In ACM Trans. Graph., vol. 29, ACM, 182.

FISHER, M., SAVVA, M., AND HANRAHAN, P. 2011. Character-
izing structural relationships in scenes using graph kernels. In
ACM Trans. Graph., vol. 30, ACM, 34.

FISHER, M., RITCHIE, D., SAVVA, M., FUNKHOUSER, T., AND
HANRAHAN, P. 2012. Example-based synthesis of 3D object
arrangements. ACM Trans. Graph. 31, 6, 135.

GOLOVINSKIY, A., AND FUNKHOUSER, T. 2009. Consistent seg-
mentation of 3D models. Computers & Graphics 33, 3,262-269.

Hu, R., FAN, L., AND Liu, L. 2012. Co-segmentation of 3D
shapes via subspace clustering. In Computer Graphics Forum,
vol. 31, Wiley Online Library, 1703-1713.

HUANG, Q.-X., AND GUIBAS, L. 2013. Consistent shape maps
via semidefinite programming. In Computer Graphics Forum,
vol. 32, Wiley Online Library, 177-186.

HUANG, Q., KOLTUN, V., AND GUIBAS, L. 2011. Joint shape
segmentation with linear programming. In ACM Trans. Graph.,
vol. 30, ACM, 125.

HuaNG, Q.-X., ZHANG, G.-X., Gao, L., Hu, S.-M.,,
BUTSCHER, A., AND GUIBAS, L. 2012. An optimization ap-
proach for extracting and encoding consistent maps in a shape
collection. ACM Trans. Graph. 31, 6, 167.

KALOGERAKIS, E., HERTZMANN, A., AND SINGH, K. 2010.
Learning 3D mesh segmentation and labeling. In SIGGRAPH.

KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND
KOLTUN, V. 2012. A probabilistic model for component-based
shape synthesis. ACM Trans. Graph. 31, 4, 55.

KM, V. G., L1, W., MITRA, N. J., DIVERDI, S., AND
FUNKHOUSER, T. 2012. Exploring collections of 3D models
using fuzzy correspondences. ACM Trans. Graph. 31, 4 (July),
54:1-54:11.

KiM, V. G., L1, W., MITRA, N. J., CHAUDHURL, S., DIVERDI,
S., AND FUNKHOUSER, T. 2013. Learning part-based templates
from large collections of 3D shapes. ACM Trans. Graph..

MARTINOVIC, A., AND VAN GOOL, L. 2013. Bayesian grammar
learning for inverse procedural modeling. In CVPR.

MATHIAS, M., MARTINOVIC, A., WEISSENBERG, J., AND VAN
GooL, L. 2011. Procedural 3D building reconstruction using
shape grammars and detectors. In 3DIMPVT.

NGUYEN, A., BEN-CHEN, M., WELNICKA, K., YE, Y., AND
GUIBAS, L. 2011. An optimization approach to improving col-
lections of shape maps. In CGF, vol. 30, 1481-1491.

PARZEN, E. 1962. On estimation of a probability density function
and mode. Ann. Math. Stat. 33, 3, 1065-1076.

SIpI, O., VAN KAICK, O., KLEIMAN, Y., ZHANG, H., AND
COHEN-OR, D. 2011. Unsupervised co-segmentation of a set of
shapes via descriptor-space spectral clustering. In ACM Trans.
Graph., vol. 30, ACM, 126.

SOCHER, R., LIN, C. C., NG, A., AND MANNING, C. 2011.
Parsing natural scenes and natural language with recursive neural
networks. In /ICML, 129-136.

ST’AvA, O., BENES, B., MECH, R., ALIAGA, D. G., AND
KRISTOF, P. 2010. Inverse procedural modeling by automatic
generation of L-systems. In Computer Graphics Forum, vol. 29,
Wiley Online Library, 665-674.

TALTON, J., YANG, L., KUMAR, R., LiM, M., GOODMAN, N.,
AND MECH, R. 2012. Learning design patterns with bayesian
grammar induction. In UIST, ACM, 63-74.

TeEBOUL, O., KOKKINOS, I., SIMON, L., KOUTSOURAKIS, P.,
AND PARAGIOS, N. 2013. Parsing facades with shape grammars
and reinforcement learning. Trans. PAMI 35, 7, 1744-1756.

TRIMBLE, 2012. Trimble 3D
http://sketchup.google.com/3Dwarehouse/.

warehouse,

VAN KAICK, O., XU, K., ZHANG, H., WANG, Y., SUN, S,
SHAMIR, A., AND COHEN-OR, D. 2013. Co-hierarchical anal-
ysis of shape structures. ACM Trans. Graph. 32, 4, 69.

WANG, Y., XU, K., L1, J., ZHANG, H., SHAMIR, A., L1u, L.,
CHENG, Z., AND XIONG, Y. 2011. Symmetry hierarchy of
man-made objects. In Computer Graphics Forum, vol. 30, Wiley
Online Library, 287-296.

Wu, F., YAN, D.-M., DONG, W., ZHANG, X., AND WONKA,
P. 2014. Inverse procedural modeling of facade layouts. ACM
Trans. Graph. 33, 4.

XU, K., CHEN, K., Fu, H., SUN, W.-L., AND HU, S.-M. 2013.
Sketch2Scene: sketch-based co-retrieval and co-placement of
3D models. ACM Trans. Graph. 32,4, 123:1-123:12.

Xu, K., MA, R., ZHANG, H., ZHU, C., SHAMIR, A., COHEN-
OR, D., AND HUANG, H. 2014. Organizing heterogeneous
scene collection through contextual focal points. ACM Transac-
tions on Graphics, (Proc. of SSIGGRAPH 2014) 33, 4, to appear.

YEH, Y.-T., YANG, L., WATSON, M., GOODMAN, N. D., AND
HANRAHAN, P. 2012. Synthesizing open worlds with con-
straints using locally annealed reversible jump mcmc. ACM
Transactions on Graphics (TOG) 31, 4, 56.

ZHANG, H., XU, K., JIANG, W., LIN, J., COHEN-OR, D., AND
CHEN, B. 2013. Layered analysis of irregular facades via sym-
metry maximization. ACM Trans. Graph. 32, 4, 121.

ZHAO, Y., AND ZHU, S.-C. 2013. Scene parsing by integrating
function, geometry and appearance models. CVPR.

ZHENG, Y., COHEN-OR, D., AVERKIOU, M., AND MITRA, N. J.
2014. Recurring part arrangements in shape collections. Com-
puter Graphics Forum (Special issue of Eurographics 2014).

