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Figure 1: Starting from an input image and a 3D model collection, we propose an unsupervised scalable method for image-to-shape and shape-to-shape
texture transfer. The method also allows novel object insertion to the original image (right). The method exploits approximate geometry priors to factorize both
geometric and illumination effects. Corresponding original 3D models are shown in blue.

Abstract

Large 3D model repositories of common objects are now ubiquitous
and are increasingly being used in computer graphics and computer
vision for both analysis and synthesis tasks. However, images of
objects in the real world have a richness of appearance that these
repositories do not capture, largely because most existing 3D models
are untextured. In this work we develop an automated pipeline
capable of transporting texture information from images of real
objects to 3D models of similar objects. This is a challenging
problem, as an object’s texture as seen in a photograph is distorted
by many factors, including pose, geometry, and illumination. These
geometric and photometric distortions must be undone in order
to transfer the pure underlying texture to a new object — the 3D
model. Instead of using problematic dense correspondences, we
factorize the problem into the reconstruction of a set of base textures
(materials) and an illumination model for the object in the image.
By exploiting the geometry of the similar 3D model, we reconstruct
certain reliable texture regions and correct for the illumination, from
which a full texture map can be recovered and applied to the model.
Our method allows for large-scale unsupervised production of richly
textured 3D models directly from image data, providing high quality
virtual objects for 3D scene design or photo editing applications, as
well as a wealth of data for training machine learning algorithms for
various inference tasks in graphics and vision.
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1 Introduction

Synthesizing realistic 3D objects and scenes remains a central goal
of computer graphics. With the growing availability of 2D image
and 3D model collections, such as ImageNet [Deng et al. 2009] and
ShapeNet [Chang et al. 2015], significant efforts have been made in
recent years to jointly harness the complementary nature of the two
collection types. Images capture detailed appearance information
and provide object context in real world scenes, but lack depth and in-
formation about occluded areas. On the other hand, 3D models have
rich full-object geometry, but often lack realistic textures needed
for high-quality renderings. While significant progress has been
made in transferring information across the two collections for pose
estimation [Aubry et al. 2014; Hueting et al. 2015], depth estima-
tion [Su et al. 2014a], and image-driven shape segmentation [Kuettel
et al. 2012; Guillaumin et al. 2014], the task of marrying 2D image
textures with 3D geometry has remained elusive.

In this paper we study how to efficiently transfer texture information
from 2D images to 3D shapes. Our focus is the simplest version
of the problem: given a single 2D image of an object and a part-
level segmented 3D model of a similar but not necessarily identical
object, how can we transfer texture information from the image to
the model? The eventual goal is to generate a fully textured model
whose appearance agrees with the image in the matching view. Given
the abundant availability of image data, this immediately enables
the generation of large quantities of high-quality 3D models with
realistic textures, in an unsupervised setting. Synthesized models
can then directly be used in computer graphics content creation
applications such as object insertion in images, or be used to provide
extensive training data as required by various machine learning-
based algorithms for 2D or 3D inference tasks (e.g., classification,
depth estimation, shape segmentation, etc.).

This problem may seem relatively straightforward, as there are now
good tools for aligning images with similar 3D models. The obvi-
ous approach would be to try to establish dense correspondences
between image and model pairs. However, the imaged real object
and the approximating 3D model often exhibit significant difference
in shape, both in terms of geometry and topology, making such
correspondences difficult to obtain or even define. Furthermore, the
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Figure 2: The retrieved part-level segmented model (a) for Figure 1, the
extracted base texture patches (b), and the recovered orientation field shown
as crossfield on the 3D model.

input image provides only partial texture information for the 3D
model, as occluded areas are not visible.

At a more fundamental level many challenges remain. Firstly, even
in visible areas the image texture is distorted by the interaction
between the unknown real 3D object geometry and its projection
into 2D image space. Furthermore, beyond geometry, complex
lighting and shading effects in the image formation process also
make it non-trivial to transfer the pure underlying texture from the
image to the 3D model – explicit analysis is required to factor out
such lighting effects. In other words, we have to decouple the texture
distortions arising from object geometry and perspective projection
from those due to illumination effects, and correct for both.

Our key observation is that images of many man-made objects, even
those with complex textures, can be described by appropriately fac-
torized low complexity models, separating texture and illumination
information. Specifically, the appearance of an imaged object can
be explained in terms of a small number of base texture patches and
their orientation in different parts of the object, as well as an illumi-
nation model for the object. Both the base textures and the lights are
unknown and have to be simultaneously estimated. We demonstrate
how to solve the above difficult inverse problem with the help of a
3D model, which only needs to be approximately similar to the im-
aged object. This (proxy) 3D model provides enough of a geometry
base to allow us to decouple geometric distortions from illumination
effects, and recover both at the same time, so that their effects on
the pure underlying texture can be removed. The retrieved pure base
texture can then be used to transfer appearance to other similar 3D
models. In Figure 1 for example, given an image I , base texture
and illumination are extracted (shown in Figure 2) with geometric
guidance from a roughly similar model M1. The extracted texture
is then used to realistically texture model M1, which in turn helps
transfer texture to other models such as M2,M3, etc. Finally, we
can synthetically add 3D models to the original input image (a teddy
in this example).

We evaluate our method on three different image-model datasets,
namely chairs, tables, and cushions. A user study indicates that
users found it difficult to consistently distinguish between the syn-
thesized and real images. In another test, we use the synthesized
images to boost training data for machine learning algorithms. In
particular, we train deep neural networks for depth estimation and
texture-guided image retrieval. For both tasks we observe significant
performance improvement by using the enriched shape dataset with
more diversified textures. As an application, we show the suitability
of our method for novel view synthesis and object insertion.

In summary, we formulate and solve the problem of object texture
transport from images to 3D models by factorizing out geometric and
perspective distortions from illumination effects and compensating
for both. We extensively evaluate the performance of the method and
demonstrate the utility of the results for different computer graphics
and computer vision tasks.

2 Related Works

Image decomposition. Extracting shape, illumination, and re-
flectance from shading is a long standing problem in computer
graphics and vision. We refer to [Barron and Malik 2015] for a
state-of-the-art result on this topic. However, when applying these
methods to object images, the results are far below the quality needed
in graphics applications, due to the complexity in how different fac-
tors that affect the image formation process are interweaved. In this
work, we position single point light sources over a sphere around
retrieved geometry and render shading samples from an estimated
view. These rendered shading samples form the basis of image
shading layer. We subsequently apply an optimization based inter-
polation to recover the coefficient of each shading sample, which
successfully decompose the input images without requiring strong
assumption on pre-defined priors.

Joint image-shape analysis. Our work is also motivated by a recent
line of efforts on joint analysis of image and shape collections, which
aim at aggregating and propagating the complementary information
contained in images and shapes. Most of these prior efforts have
focused on transferring shape attributes to images. Representative
works in this domain include shape-driven object detection [Aubry
et al. 2014], shape-driven object pose estimation [Hueting et al. 2015;
Su et al. 2015; Lim et al. 2014], symmetry detection [Fish* et al.
2014], depth reconstruction [Su et al. 2014a; Choy et al. 2016], data-
driven image-based modeling [Huang et al. 2015], and image-driven
shape segmentation [Wang et al. 2013]. In contrast, transferring im-
age attributes to shapes has received far less attention. In particular,
existing works only focus on transferring global-scale attributes such
as part segmentations [Wang et al. 2013] and material [Kholgade
et al. 2014]. In this work, we focus on transferring texture attributes,
which exhibit rich information at both fine and coarse scales.

Novel view prediction. Another relevant research topic is predict-
ing the appearance of an object from novel views. In [Su et al.
2014b], Su et al. propose a probabilistic framework for inferring
feature representations of unseen views. Such a framework, however,
is unsuitable for the synthesis of fine and subtle texture elements.
Recently, there have been efforts to predict novel views using convo-
lutional neural networks [Dosovitskiy et al. 2015; Tatarchenko et al.
2015]. However, due to the characteristics of convolutional filters,
these methods tend to smooth out local textural details. In contrast,
we apply synthesis to generate texture details.

Texture synthesis. In contrast to texture mapping, texture synthe-
sis focuses on propagating texture elements across the surface to
generate realistic visual appearance. This domain has been studied
extensively, and we refer to [Wei et al. 2009] for a survey. Instead
of designing new texture synthesis techniques, in this paper we fo-
cus on how to adopt existing texture synthesis techniques, i.e., by
computing the texture element to be synthesized on each part.

3 Overview

In this paper we focus on clean textured object images, such as prod-
uct images on the web that are now widely available. We also use
publicly available 3D model repositories, such as ShapeNet [Chang
et al. 2015]. More formally, our method makes three key assump-
tions: (i) a clean image of the textured object is available with the
background removed, (ii) the texture pattern on the object is homoge-
neous within object parts and each texture pattern can be built from a
texture element of a size that is small when compared to the full part
size, and (iii) a similar 3D model is available that is segmented into
parts. Given such a product image of a textured object and a similar
untextured segmented 3D model, our basic objective is to transfer
the underlying textures visible in the image to the corresponding
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Figure 3: Pipeline overview. Our system takes an input image (a). A geometrically similar shape is then retrieved (b1). According to the estimated geometry we
find large patches on the image (b2) and detect their correspondences (b3). The geometry also helps to factor out shading (c) and reflectance (d), so that base
textures (e) are extracted with little distortion and homogeneous lighting. Final texture transfer can be applied to the retrieved model (f).

parts of the model. We also aim to further propagate such texture
information to many other related models in the same class. Since
textured object images are very common on the web, this enables a
novel unsupervised pipeline that can vastly enrich the set of available
textured 3D models.

Our algorithm deeply exploits the geometry of the 3D model in both
correcting illumination artifacts (e.g., shading) on the object and in
rectifying the underlying texture information that may have been
distorted by the imaging process. We aim to recover the underly-
ing ideal texture directly, undoing the geometric and photometric
distortions mentioned above. In this fashion we avoid the need to
establish dense image-model correspondences, a difficult task which
is not very well defined in our setting since the 3D models and the
imaged object are only approximately similar. As a byproduct, our
algorithm also builds an illumination model for the object in the
image, which can be utilized for image editing tasks.

In our approach (see Figure 3) we seek reliable texture patches in
the image which can be geometrically ‘unwrapped’ and photometri-
cally corrected so as to recover the true underlying texture for the
corresponding object part. After aligning the 3D model to the object
image, we rely on the proxy geometry provided by the 3D model for
the texture patch unwrapping. We extract multiple texture patches
from the image and attempt to align them based on their periodic
structure. This allows us both to select the most reliable patches that
best describe the base textures elements to be used, as well as to
make decisions about material groups (which texture is to be painted
on which shape part). We synthesize a texture image for each ma-
terial group using the largest extracted reliable texture patches and
also estimate the texture orientation (indicated by cross-fields) in
each object part.

For the illumination correction we again use the 3D model. We
sample point light sources over a sphere around the model and gen-
erate many grayscale shading images of the model from which we
approximate the lighting configuration used in the image (approxi-
mated by a discrete distribution over the sampled points). This step
extracts the intrinsic image and undoes illumination effects. As the
3D proxy model is not exact, this step is an approximation. However,
the extracted illumination is sufficiently correct as preparation for
our subsequent texture extraction step. Note that since our goal is to
extract a set of base textures, we can only focus on the near planar
regions and ignore the regions near boundaries.

For the final texture transfer step, we use a global texture synthesis
step in the uv texture domain, after some local hole filling. We prefer
a global method to avoid spreading artifacts that may still be present
in the extracted texture patch. Furthermore, we need to respect the
orientation of the texture relative to the object part geometry, as
recovered from the image. This is crucial not only for the initial
texture transfer to the proxy model, but also for transferring the
texture to other 3D models.

The rest of the paper is organized as follows: Section 4 describes
the core method for extracting appearance (texture and illumination)
from image I; transferring this information from image I to shape S;
Section 5 describes how to transfer texture information from shape
S to other similar models, Section 6 presents evaluation results and
finally Section 7 discusses applications.

4 Image → Shape Texture Transfer

The input to the image to shape texture transfer stage is (i) a given
image I with clear background, (ii) a similar 3D object S with part-
level segmentation, and (iii) an estimated camera pose V of I with
respect to the coordinate system associated with S. In this paper, we

Figure 4: Shape retrieval and alignment. Here we show 5 closest results
of original and blurred image (to reduce texture effects). We use the closest
shape (second column) for further estimation. For each image, we use the
estimated view corresponding to the model in the second column.



use the method described in [Huang et al. 2015] to retrieve a similar
shape S from a shape collection and to estimate the camera pose V
(Figure 4). The remainder of this section describes the details.

4.1 Geometry-guided Patch Extraction

We assume that the imaged object in I has a low complexity ap-
pearance model, i.e., the object is covered with a repeating texture
pattern and imaged under an (unknown) illumination setting. The
key challenge is to factor out the projection and illumination artifacts
in order to extract a set of simple base textures and an illumination
model. We use the geometry information available in the form of
shape S to guide both these tasks. First, we detect repeating ele-
ments in the input image and then use them to group parts of the
input shape S to guide subsequent image decomposition.

The repeating elements consist of patches of the input image each
of which has a salient regular texture pattern. Extracting such regu-
lar texture patterns directly is difficult because the texture may be
distorted by the geometry of the captured shape. To address this
issue, we use the geometry provided by S to unwrap each texture
pattern into a common image plane. As the object in the input image
and the shape S are similar, we found that it is sufficient to simply
overlay the input image object and the rendered image for depth and
normal transfer as explained in the following.

Patch initialization. To identify the patches, we uniformly sample
a 50× 50 grid of points on the input image (Figure 5(f)). From each
grid point, we start a region growing step to find the largest square
flat region on S centred at that point. The criteria for “flat region”
is that within such a region, the normal difference and gradient of
depth is less than a certain threshold. In this way we grow a patch
around each grid point, extending it from pixel i to pixel j when

∠i,j(Ni,Nj) ≤ η
maxi(∇Di) ≤ ξ

}
, (1)

where Ni and Nj denote normals on the mesh S corresponding
to pixels i and j,∇Di denotes difference in depths on points of S
around i, and η and ξ are threshold margins (η = 5◦ and ξ = 3%).
We keep all patches that cover more than 400 pixels. We denote

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

(o) (p) (q) (r)

Figure 5: (a): Input image I; (b) retrieved shape S; (c) overlaid I and
S for illustration; (d) depth map corresponding to #b; (e) normal map
corresponding to #b; (f) uniform grid sampling; (g)-(j): 4 examples of
cropped patch from I; (k)-(n) patches directly cropped from I corresponding
to highlighted area in (g)-(j); (o)-(r) unwrapped patches into a common
image plane to remove perspective distortions.

(a) 
(b) 
(c) 
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(e)

(f) (g)

Figure 6: Patch registration between a pair of unwrapped patches. (a) un-
wrapped patch; (b) SIFT feature points; (c) Canny edges; (d) distance
field of Canny edges; (e-g) examples of registration with red dot denoting
corresponding feature point.

these initial patches as {P 1, P 2, . . . }, which are allowed to overlap
each other.

Patch rectification. The appearance of the initial patches may be
distorted due to the geometry of the imaged object. Hence, next
we use the proxy geometry in the form of S to correct the patches.
Specifically, to recover from the distortion of {P 1, P 2, . . . }, we un-
wrap them into a common image plane. We denote the unwrapped
patches as {P1, P2, . . . }. Unwrapping from P i → Pi is straightfor-
ward since P i is on an almost flat region by construction. While this
can be done by a local parameterization approach, we found a much
simpler option to be sufficient as explained next.

For a patch P i , let the four corners in clockwise direction be
{q1, q2, q3, q4}. Correspondingly, let the unknown four corners
of the unwrapped patch Pi be {q1, q2, q3, q4}. We simply flatten the
patch into a plane by ‘unfolding’ it to a flat configuration while best
keeping orginal lengths/areas. We fix q1 to the origin on a 2D plane,
set edge q1q2 to be the X-axis, then unfold4q1q2q4 into4q1q2q4,
and finally 4q2q3q4 into 4q2q3q4. We keep the scale ratios of
the form ‖qiqj‖/‖qiqj‖ for triangle edges to be fixed for different
patches. Since the original patch is flat, this step rarely leads to any
foldover. Thus, we obtain rectified texture from different areas of
the shape as shown in Figure 5.

Patch correspondences. We now establish correspondences across
the rectified initial patches to extract a global repeating structure.
Moreover, the extracted correspondence across the different patches
indicates whether they capture the same texture pattern (or are out-
liers) and will later help us to group parts based on material (i.e.,
texture) assignment and to estimate the illumination environment.

We start by registering a pair of unwrapped patches Pi and Pj . We
first compute SIFT features [Lowe 2004]) on Pi and Pj (we denote
the patch with fewer SIFT feature points as Pj). Let them-th feature
point of patch Pi be denoted f i

m. For each such feature point, we
have the location (x, y), an orientation r, and a 128-dimensional
descriptor d. When registering Pj → Pi, we simply pick a matching
pair of feature points (f i

k1
, f j

k2
) and perform a rigid transformation

on Pj , where the difference between the feature locations gives the
translation and the difference between the feature orientations gives
the rotation.

Since the patches can overlap, the SIFT features in (f i
k1
, f j

k2
) are

not helpful for alignment in regions of overlap. Hence, in order to
robustly register the two patches, we select the 20 best matches for



each f j
k and among these 20× |f j | matches, we pick the one with

minimum registration energy Er(f i
k1
, f j

k2
). This energy gives low

values when: (i) the Canny edge of two patches agree, and (ii) the
overlap region of the two patches are large. Specifically,

Er(f i
k1
, f j

k2
) = ‖G(Pi)−G(Tk1k2(Pj)‖2

+ λ ∗A(M(Pi, Tk1k2(Pj)),

where Tk1k2(·) is the transformation guided from f j
k2
→ f i

k1
,

M(·, ·) is the mask of the union of two patches, A(.) denotes the
area of the overlapping region, and G(·) is a distance field of the
extracted Canny edge (using OpenCV implementation). In our tests,
we set λ = −0.1 and the distance field is generated by performing
a Gaussian blur over Canny edge with kernel size of 15. Figure 6
shows some examples.

After two patches are registered with minimum registration energy,
we select a 6× 6 pixel square around the matched feature points on
both Pi and Tk1k2(Pj) denoted as STi and STj . We then determine
whether the registration is successful based on the similarity between
STi and STj . Since, at this stage, there might be an illumination
effect, we simply account for that using a shading intensity ratio k
and the similarity between STi and STj is defined by min

k
(‖STi −

k·STj‖2). Finally, if the similarity value is under a certain threshold,
we mark the patch Pi and Pj to be sharing the same texture after
a rigid transformation Tk1k2 . Otherwise, they are marked to be
different.

4.2 Material-Guided Patch Grouping

Directly performing part level texture transfer is difficult for two
reasons: (i) parts can be totally occluded in image I and (ii) even
for the partially visible parts, the texture information extracted from
image I could be limited thus preventing high quality texture syn-
thesis. However, for most of the real-world examples, many parts
share the same texture (or plain color), thus providing redundancy.
We exploit this redundancy to solve the above problems by grouping
the original shape parts, with parts within the same group being
assigned the same texture. We assume the models to have symmetric
parts to be grouped.

We group the parts based on texture correspondence, thus producing
material-based groups.Specifically, we test all patch pairs (Pi, Pj)
if they are from different groups and merge the two groups if Pi and
Pj are registered successfully (as described before). After all patch
pairs are examined, some parts can still remain untouched with no
associated texture patch. We heuristically complete the material
grouping as: (i) for thin parts with no associated textures, we treat
them as plain color and use the average pixel value projected on
those parts after SIFT flow [Liu et al. 2011] is applied on the image
I (see Figure 7); and (ii) for larger parts, we link them into the group
with the largest texture patch generated. For example, if a part at

(a) (b) (c) (d)

Figure 7: For the image/shape pair on Figure 5: (a) geometry-based group-
ing; (b) material-based grouping; (c) calculated SIFT flow from silhouette of
image I to silhouette of shape S rendered from the estimated view; (d) apply
SIFTflow to image I .

the back of the chair is completely occluded, we assign it to the
largest texture group, which typically is the one associated with the
seat cover. Next, we will synthesize one texture image for each
material group based on the notion of a trustable region from the
largest associated texture patch.

Figure 8: Shading samples using retrieved 3D model geometry. Only a
selection of samples are shown.

4.3 Image Decomposition

The patch correspondences can also guide the extraction of illumina-
tion from input image I . In order to perform intrinsic image decom-
position, we decompose the captured photograph I into reflectance
Ir and shading Is, since the render equation tells us I = Ir · Is
for each channel of each pixel. In our setting, this implies that for
corresponding patches, the Ir component at the corresponding fea-
ture points should be the same because they share the same texture
location. In other words, when the (unknown) groundtruth shading
of this image is factored out from I , Ir for corresponding locations
should be the same. Thus we arrive at,

Is := argmin
Is∗

∑
(i,j)∈Π

‖Ir∗(li)− Ir∗(lj)‖, (2)

where Ir∗ = I/Is∗ , Π denotes corresponding pairs with matched
feature at location li and lj on the image I , and ‖ · ‖ denotes 2-norm
of the RGB channels. Note that Is has RGB channels since we
found environmental illumination often to be not pure white.

In the raw form, Equation 2 is underconstrained. As such, we fur-
ther regularize Is∗ with shading priors. We again use the proxy
geometry to drastically restrict the degrees of freedom. Specifi-
cally, we use the shading image of shape S to approximate Is∗ .
Exploiting the additive nature of illumination, we can decom-
pose Is∗ into separate parts I1

s∗ + I2
s∗ + . . . . To this end, we

sample single point light sources on a sphere around S and ren-
der grayscale shading images {Is1 , Is2 , . . . } and approximate Is∗
by interpolating the sample shading images over the RGB chan-
nel. Specifically, we place 100 individual point lights at loca-
tions (cos(u) cos(v), cos(u) sin(v), sin(u)) where u = arcsin(1−
2k−1
100

), v = u
√

100π, and k = 1, . . . , 100. For each point light,
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Figure 9: (a) Corresponded point pairs; (b) interpolated shading; (c) inter-
polation coefficients for the different shading samples; (d) shading factorized
from the input image I . (e)-(h) shows the selected shading samples.

we render a grayscale shading image as shown in Figure 8. We
ignore all fully black shading images as they do not contribute to
the decomposition. Note that in this step, we preprocess the shading
images to recover the effect of gamma correction. Therefore, via
linear interpolation we have Is∗ =

∑
k=1,..,100

(cr,g,bk · Isk ). Thus,

illumination optimization amounts to,

argmin
{ct

k
}

∑
(i,j)∈Π

‖Ir∗(li)− Ir∗(lj)‖, (3)

where Ir∗ = I/
∑

k=1,..,100

(cr,g,bk · Isk ) and the coefficient vector

regularized as
∑

k=1,..,100

ctk = 1, t = {r, g, b}.

Instead of providing an intrinsic decomposition with fine detail, Ir∗
only results in reliable reflectance in large flat areas as shown in
Figure 9. This is because shape S is not exactly the same as the
object captured in image I , especially around the boundaries and
image-model mismatch regions.

The above decomposition, however, is still suitable for our goal.
First, we mainly care about the texture on the large areas where
patch texture could be generated. Second, we do not have to rely on
other prior information as in state-of-the-art intrinsic decomposition
methods [Bell et al. 2014; Barron and Malik 2015] (see compari-
son in Section 6). Finally, the recovered coefficients can easily be
converted to recreate the illumination by placing light sources with
extracted coefficient as intensity for each channel.

(a) (b) (c) (d)

Figure 10: Some examples of artifacts captured by the largest texture patch
and the trustworthy region after patch alignment.

(a)

(b) (c) (d)

Figure 11: (a) Extracted trustable region; (b) hole filling by [Darabi et al.
2012]; (c) texture synthesis by [Efros and Freeman 2001]; (d) directly
repeating texture causes visible artifacts.

4.4 Texture Transfer

Once we factor out the effect of illumination, we focus on reflectance
Ir . We regenerate the unwrapped texture patches {P1, P2, . . . }
based on Ir . As we assume per-part texture to be homogeneous,
the largest patch usually captures all necessary texture information.
However, it can locally suffer from artifacts (see Figure 10) due
to image-shape inconsistency, unexpected patterns, high distortion
around boundaries, etc. Hence, directly using the largest patch easily
results in unwanted artifacts.

In this step, we extract useful texture information from {P1, P2, . . . }
so that we can synthesize high-quality textures for each material
group. To this end, we adopt a simple but effective method: we
introduce the notion of trustable region from the largest texture
patch of each material group. The criteria for being a trustable
region is whether the location texture appears more than once on
image Ir . Specifically, for each material group, we perform pairwise
patch registration between each patch and the largest patch. After
registration, we examine all the corresponding 20×20 pixel patches
on STi,j . We mark a region as trustable on STi if the sum of pixel
value differences on the 20× 20 pixel patch is less than 10%.

Texture synthesis. In this step, we generate a texture image for
each material group based on the trustable region extracted from the
last step. First, we perform hole filling using [Darabi et al. 2012] to
regularize the boundary of the trustable region. Then, we simply use
[Efros and Freeman 2001] to synthesis a large size texture image.
Note that we should preserve the scale of the texture as it is on image
I when transferring to shape S. That means we cannot arbitrarily
rescale the uv layout when parameterizing each part of S. In order
to ensure good quality, we synthesize a large texture image to cover
the uv layout instead of directly spatially repeating small texture
examples. In our experiment, we found 2048×2048 as a reasonable
size with acceptable synthesis time.

We apply the method in [Vallet and Lvy 2009] (using Blender’s
built-in version called Smart UV Project) on each part of S for uv

(a) (b) (c)

Figure 12: (a) Estimated orientation visualized on image I; (b) orientation
frame projected on to uv plane; (c) uv-layout after rescaling and rotation.



parameterization. By default, uv coordinates are scaled to [0, 1].
Hence, we rescale the uv coordinates to ensure the number of pixels
in texture space covered by the parameterization of the mesh is the
same as the number of pixels in image I covered by the mesh when
it is projected back to the image plane.

We can now transfer orientation of the uv layout to S by following
image I . This is straightforward since the correspondence between a
patch and the largest patch specifies a common orientation frame. We
project the orientations (up and right vector) of all patches onto uv
space and pick a dominant up-direction using RANSAC. Specifically,
for all the orientations {r1, r2, . . . }, we set 20◦ as threshold and
pick the orientation with the most number of inliers. We set the
dominant up-direction as the mean orientation of these inliers. We
align the dominant up-direction to the up-direction of the texture
image. We flip the right direction on uv layout, if necessary based
on texture registration score. See Figure 12 for clarification.

5 Shape → Shape Texture Transfer

In the previous section, we described how to transfer texture from
an object in image I to a similar shape S. We now describe how to
further diffuse the texture information to other similar 3D modelsM
in the model collection. Note that we assume the model collection
to be coaligned [Averkiou et al. 2016]. The main observation is
that although the imaged object in I is too different from M to
reliably generate base texture elements, it still provides valuable
information as to how to orient the (extracted) base textures from I to
M . Intuitively, S acts as a bridge to transfer orientation information
from image I to the target shape M , while the base textures are
obtained based on the I-S analysis. Thus, the main task is to simply
map orientation of uv layout.

Similar to part-level parameterization of S, we first parameterize
each part of shape M . Given a part and its uv layout, for each face,
we project the up direction in 3D space at the face center onto the
surface and map the projected direction onto 2D uv space. If a face is
nearly perpendicular to the up direction, we use the forward direction
instead. After that, we use weighted RANSAC to compute the
dominant up-direction based on the projected orientations, weighted
by face area. This will give us a dominant up-direction for the
corresponding parts S∗ and M∗ from S and M . By aligning the
up-direction from M∗ to S∗, we naturally get the texture orientation.
This completes the texture transfer from the image I to the retrieved
shape M .

6 Evaluation

In this section, we discuss comparison results with baseline meth-
ods, state-of-the-art alternatives, and also report evaluation results
assessing the importance of each stage of the pipeline. Code and
data is available online1.

Datasets. We tested our pipeline with 70 ‘chair’ images download
by searching with keywords chair, fabric chair, wood chair, etc.. As
shape collection, we used dataset for ‘chairs’ from the ShapeNet
database. We used a sample of 1000 of them for our tests as they
already provide enough geometry variance for this task. We also
tested with two other classes, ‘cushion’ and ‘table.’

6.1 Result gallery

We show a sample of texture transfer results for 42 images in Fig-
ure 15 (please zoom to see the results). For each image, we retrieve
the closest shape and transfer texture from the image to shape as

1http://geometry.cs.ucl.ac.uk/projects/2016/texture transfer/

Figure 13: Image-to-shape and shape-to-shape texture transfer results for
‘cushion’ and ‘table’ classes.

shown in the diagonal entry. After that, we perform shape-to-shape
texture transfer from the closest shape to the other 41 shapes. The
images are rendered from a novel view. Images rendered with es-
timated view are in the supplementary material. For the cushions
and tables datasets, we show results with 5 images for each category
in Figure 13. We evaluate generality of our approach on different
categories (cap, mug, vase, aeroplane) of objects in Figure 14. In
this case we select 5 models from ShapeNet for each category.

(a) (b) (c) (d)

Figure 14: Texture transfer results for other categories. First row: input
image. Second row: retrieved shape and extracted texture patch. Last row:
re-rendered image with our texture transfer output and estimated illumination.
Please note that the proxy shapes differ from the input images, such as the
brim of the cap, handle of the mug, top of the vase, and aeroplane wings.

6.2 Comparison with baseline methods

Baseline #1: SIFTflow-based projection. One simple baseline
method for transferring texture from image to shape is to compute a
dense correspondence between the image and a retrieved 3D model
and then simply transfer texture information from the image to the
projected model. As shown in Figure 7, we use SIFTflow technique
to build such a dense correspondence between the silhouette of the
image and the silhouette of the shape rendered from the estimated
view. After applying SIFTflow, we project the pixels directly onto
shape using the estimated dense correspondence. Note the original
image is not corrected for shading effect. Figure 16 shows some
example results.

Baseline #2: Shapenet textures. Another baseline is simply to take
the texture information (when present) from the ShapeNet database.
Please note that the quality of texture from ShapeNet is very variable.
For example, in the chair category, about 50% of the shapes have

http://geometry.cs.ucl.ac.uk/projects/2016/texture_transfer/


Figure 15: Appearance transfer on ‘chair’ dataset. Image-to-shape (diagonal entries) and shape-to-shape appearance transfer results. This is a high
resolution figure, please zoom in to view details. The results (3D textured models along with recovered illumination setting) are also available for download as
supplementary material.

meaningless textures, i.e., simple color assignment. On the other
hand, a handful of the models (about 5−10% come with high-quality
texture, probably hand-curated by some professional.

User study. We conducted a user study on Amazon Mechanical
Turk (AMT) to compare the results of our unsupervised method
against the two baseline methods and also real images (product pho-
tographs). We tested on 4 datasets: (i) 70 real images; (ii) transfer
texture of each such real images to the closest (retrieved) shape using
our approach and rendered from the estimated view under estimated
illumination; (iii) SIFTflow-based projection from the real images

to the closest (retrieved) shape and rendered using our estimated
illumination in a slightly rotated view from our estimation; and (iv)
for each retrieved closest shape, we apply the associated texture from
ShapeNet and render from the estimated view with our estimated
illumination. Examples of the dataset are shown in Figure 16.

The user study was designed as follows: we combined all the 70× 4
images and randomly selected 3000 pairs from these images. For
each pair, we ask 3 different users to select the object they judged
to be more realistic or plausible. (They were forced to choose one
of the two images.) We analyzed the result using the Bradley-Terry
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Figure 16: Baseline examples. First row: input image (left), after applying
SIFTflow (right); second row: our results; third row: SIFTflow + projection;
fourth row: ShapeNet textures.

model [Hunter 2004] to robustly predict the probability of each
image winning against each other image. Figure 17 shows that the
real images had the highest plausibility, only slightly better than our
automatically synthesized texture transfer results. Results from the
two baseline methods were easily identified as unrealistic.
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Figure 17: Probability of rating each image winning against each other
image as computed based on the Bradley-Terry model [Hunter 2004]. Note
that our results are consistently rated as realistic by the users.

6.3 Effect of texture orientation

In Figure 18, we compare our results against a naive approach of
assigning random orientation to the texture patches. In both case, we
use the base textures extracted by our method. Random orientations
easily break realism as in real-world texture patterns (e.g., fabric,
wood grains) are carefully laid out with respect to the part features
of the objects.

6.4 Effect of patch alignment

In Figure 20, we show the effect of our patch alignment step on a
representative chair example with irregular texture. We formulate
our patch alignment step based on the assumption of repetitive
texture pattern but not necessary to have regular texton structure.
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Figure 18: Comparison against random texture orientations: (top) input
images, (middle) our appearance transfer results, (bottom) texture mapping
with randomly oriented textures (base texture extracted using our method).

6.5 Evaluation of illumination estimation

Comparison with intrinsic decomposition methods. The goal of
our illumination estimation step is essentially different from classical
intrinsic decomposition. During illumination estimation, we make
use of geometric information in the form of the retrieved model,
which strongly regularizes the solution. Remove shading effect from
the image, in turn results in the selection of large flat regions from
which trustable regions are extracted.

We compare our illumination estimation result with state-of-the-
art intrinsic decomposition algorithms (see Figure 19): IIW [Bell
et al. 2014] and SIRFS [Barron and Malik 2015]. Because both ap-
proaches use smoothness and parsimony priors, fine texture details
can easily be removed during shading. For illumination estimation,
the difference between our method and SIRFS is twofold: (i) most

Input image IIW SIRFS Ours

Reflectance
Shading

Figure 19: (a) Input image, (b) IIW [Bell et al. 2014] result, (c) SIRFS [Bar-
ron and Malik 2015] result, (d) our result. For each result, the upper row
shows reflectance while the lower row shows shading.



(a) (b) (c) (d) (e)

Figure 20: Irregular texture transfer. (a) input image, (b) retrieved shape,
(c) frame orientation, (d) trustable region and hole filling result, (e) appear-
ance transfer result.

3D object cannot be formulated as a continuous depth map, there-
fore SIRFS cannot provide a reliable geometry estimation, which
leads to an approximate illumination even when the combination
of reflectance and shading agree with the input image; and (ii) for
optimization efficiency, SIRFS has to rely on a simple rendering
engine that only consider normal of geometry. In contrast, we can
handle effects due to self-shadowing, ambient occlusion, etc. Since
our shading samples are rendered offline (for basis computation),
we can easily handle complex shading effects.

36 18 9

50

25

Figure 21: Effect of number of shading samples. (Top) Correspondences
used, (middle) estimated shading with 50 shading samples, (bottom) esti-
mated shading with 25 shading samples.

We also tested the robustness of our illumination estimation ap-
proach by changing the number of shading samples and the number
of correspondences used. Figure 21 shows our result with 36 corre-
spondences from image down-sampled to 18 and 9 correspondences.
The number of shading samples is reduced from 50 to 25.

We use the extracted illumination to remove shading from input
image to improve the brightness consistency between different parts.
Therefore, after illumination correction, we obtain larger trustable
regions, which in turn results in improved transfer as shown in
Figure 22.

6.6 Effect of proxy shape

In Figure 23 we show the robustness of image-to-shape texture
transfer under different choices of proxy shapes. Since we only rely

(a)

(d)

(b1)

(e2)

(b2)
(c)

(e1)

(f)

Figure 22: Effect of illumination correction. (a) input image and retrieved
shape, (b1) extracted trustworthy region with patch alignment on patches
cut from input image, (b2) hole filling results, (c) texture synthesis results.
(d)estimated shading and illumination correction, (e1,e2) extracted trustwor-
thy region and hole filling result, (f) final texture synthesis result.

on rough geometry provided by the retrieved shape, our transfer
result is robust to the initial 2D-3D correspondence.

i2s

i2s s2s

i2s

s2s

(a)(b1) (b2)

(c)(d1) (d2)

Figure 23: (a) Input image, (b1,b2) image-to-shape transfer texture for two
closest shapes, (c) directly transferring texture to another shape, (d1,d2) indi-
rectly transferring texture via the closest shape using shape-to-shape transfer.

6.7 Comparison with TILT

We show the advantage of using geometry proxy during prespective
correcting by comparing with state-of-the-art texture rectification
methods. We used TILT [Zhang et al. 2012], which makes use of
low rank prior, to rectify a user-cropped texture patch. As shown in
Figure 24, low rank assumption is not sufficient to remove ambiguity,
while our geometry-based rectification leads to a more intuitive
result.



(a) (c)

(b)

(d)

Figure 24: Comparison with TILT [Zhang et al. 2012]: (a) a red rectangle
is selected by the user on the input image and rotated to the green one using
TILT for texture rectification; (b) shows the texture patch in green rectangle;
for comparison, (c) is the texture patch extracted using our approach; (d)
applys result of TILT texture rectification, rendered with our orientation and
illumination.

7 Application

7.1 Image editing

We use the estimated illumination to realistically insert novel objects
into the input image. Again, geometry from the retrieved shape S
helps to estimate shadowing effects. We use our method to estimate
view angle for S, texture patterns, and illumination. We render
a shading image IS∗ with the to be inserted 3D object but set the
object to be invisible. Let IS be the shading image of retrieved object.
We then obtain the shading effect of the additional object as C =
IS
∗/IS . Next, we apply the shading effectC on input image as I ′ =

I ∗ C. We render H in the scene with S set to be invisible. Hence,
S only contributes shading effect on H due to ambient effect and
shadow. Finally, we copy H to I ′. Figure 25 shows a few examples.
Note that unlike state-of-the-art object insertion methods [Zheng
et al. 2012; Kholgade et al. 2014], the above workflow only requires
the user to specify the position of the inserted object on S, while the
rest of the steps are automatic.

Image

Shape

(a)

(b) (c)

(d) (e)

(f)

Figure 25: Image editing.

7.2 Novel view synthesis

Our texture synthesis pipeline enables us to infer the appearance
of invisible parts of an object. In Figure 15, we present our tex-
ture transfer results rendered from novel views different from the
estimated viewpoint of the image.

7.3 Boosting 3D model repositories

Since our system is scalable, it allows unsupervised texture transfer
from real product images to models in large-scale collections such
as ShapeNet. Such model repositories are important for training
machine-learning algorithms. Su et al. [2015] uses millions of
rendered images to train deep neural networks for computer vision
tasks and obtains state-of-the-art results on real-world test data. We
demonstrate that such 3D shape repositories enriched by our method
can provide valuable boost to learning tasks, compared with the
original textures. We conduct experiments on two tasks: single
image depth estimation and texture-guided image retrieval.

(i) Single-image depth estimation. Obtaining large-amount of
training data with groundtruth is not easy for training depth esti-
mators. We train a deep neural network using our textured synthetic
data. Our network takes a single image with foreground mask as
input and predicts the relative depth of every pixel. This depth is in a
canonical frame with fixed range, i.e., we make the assumption that
objects have diameter 1 and the camera is placed at a fixed distance
3 to the center of the object. Similar to [Noh et al. 2015], we use
a network with an encoding stage (a stack of convolutional layers)
and a decoding stage (a stack of deconvolutional layers). For more
details of the network please refer to the supplementary material.

We use synthetic data rendered from 3D models to train the network,
since groundtruth depth information are obtained for free in the
rendering process. Specifically, our training set is rendered from
51 3D chair models sampled from the ShapeNet, with 3 different
settings of textures. As baselines, in the first setting, we render
3D shapes with no textures, and in the second setting we render
them with original textures from artists. As for our own textured
rendering, we transfer textures from 51 images to each 3D model.
This produces 51× 51 shape-texture combinations. For each texture
setting, we render 80K images. The rendering parameters are set
according to [Su et al. 2015].

We train 3 different neural networks for the 3 texture settings from
scratch and compare their performance in Figure 26. We evaluate
on a test dataset containing 6000 images with depth information,
rendered from 100 ShapeNet chair models at random viewpoints.
The evaluation protocol is pixel-wise mean square depth error. We
observe that the system trained with our textures is significantly
better than the one trained without textures. Surprisingly, it is even
better than the original textures by human artists. We hypothesize
that this is because our texture transfer system allows more than one
set of textures for each 3D model, resulting in improved diversity of
training data, a desired property to prevent overfitting in estimating
the deep learning model parameters.

(ii) Texture-guided image retrieval. We also train an image re-
trieval system focusing on texture similarity but agnostic to other
nuisances. We choose to train a siamese neural network for this
task. A siamese network takes a pair of images as input and embeds
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Figure 26: CNN-based single image depth estimation (chairs). Texture-
guided image retrieval (chairs).
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Figure 27: Examples of texture-guided image retrieval.

them in a common space such that the distance in this embedding
space reflects their dissimilarity for some desired property, such as
texture or geometry. More details of our siamese network can be
found in supplementary material. To train this network, we need
both positive pairs that are objects with similar textures as well as
negative pairs that are objects with dissimilar textures. Obtaining
such pairs from real-world images is not easy. Again, we generate
synthetic training data by rendering textured 3D models. Similar
to the depth estimation experiment, we transfer textures from each
of 51 2D images to each of 51 3D chair models. This allows us to
sample pairs of rendered images and use them as positive pair if their
textures are transferred from the same image. In total we sample
8 million such pairs, with 10% being positive. We compare with
three baselines. For the first baseline, we train the same siamese
network using rendered 3D models with textures from human artist
(ShapeNet textures). Since each texture only presents on a single 3D
models in this setting, a pair is positive only if the two images are
rendered from the same 3D model. For the second baseline, we train
a network by renderings without textures. Lastly, we also include
distance from HoG image features as a baseline.

We evaluate all the methods by an image retrieval experiment using
the Euclidean distance in the embedding space (or feature space for
HoG features). Since real-world benchmark test dataset is hard to
obtain, we create a synthetic test set similar to how we generate the
training set. Specifically, we transfer textures from 30 images to 30
shapes. The evaluation protocol is the top K retrieval accuracy for
each image in the test set, i.e., how many images from the top K
retrieval results have the same texture as the query. Figure 26 shows
that our method comfortably outperforms all the baselines.

This system generalizes well to real images, though trained on syn-
thetic images. We downloaded 757 real chair images using the Bing
search engine and conducted a simple texture-guided retrieval ex-
periment. We qualitatively compare the retrieval results using the
embedding of siamese network from our textured data and HoG
features in Figure 27. Results show that the system trained by our
textured data is able to focus on texture variation while being agnos-
tic to changes such as viewpoint, geometry, and lighting condition.
More results can be found in supplementary material.

8 Discussion and Future Work

We have formulated and provided a solution to the problem of un-
supervised appearance transfer from 2D images to 3D model col-

lections. The main insight of our approach is that knowledge of the
geometry of a 3D model similar to the object in the image allows us
to separate and undo geometric and photometric texture distortions
in the image. Our pipeline is simple and relies (i) on discovering a
low complexity texture model in the form of a set of base texture
patches and how they are oriented on the image object and (ii) an il-
lumination correction. We have extensively evaluated our algorithm,
have compared against baseline methods and state-of-the-art alter-
natives, and have presented applications to both computer graphics
and vision tasks.

Limitations. The main limitation of our approach is that we assume
the object to have homogeneous part-level textures. While this
assumption allows us to reliably extract base texture from raw input
images, it limits handling images where this assumption is violated
(e.g., hand-painted irregular patterns on a wooden chair). Note that
with limited information included in the generated patches, texture
synthesis can produce unwanted artifacts in the synthesized textures
by repeating partial structures.

(a)

(b)

(c)

(d)

(e)

(f)

(i)

(j)

Figure 28: Limitations: (i) with sphere-like geometry as in (a,b), even
when we synthesize texture (c) from a limited flat region, we may still get
large texture distortions (d,e, cropped region); (ii) if the texture element
is large compared to the size of the containing object part (f), our patch-
based approach may fail to capture enough texture information, leading to
problematic texture synthesis and visual artifacts.

A second limitation is that we need to unwrap textures in images
according to the estimated shape normals. This approach works quite
well when the surfaces are relatively flat. Although our algorithm is
designed for piecewise planar shapes, it is applicable to nonplanar
shapes (i.e., Fig 14) as long as there are locally flat regions presenting
sufficient texture information. However, for highly folded surfaces
such as folds and pleats on dresses and curtains, our current method
will fail. One interesting future direction will be to perform texture
analysis and synthesis directly on the proxy geometries to relax this
restriction.

Future work. We find the idea of seamless transfer of information
between image and model collections to be attractive and deserving
further investigation. Marrying the two data forms can combine
their complementary strengths, allowing applications not otherwise
possible. In the short term, we would like investigate (i) better
handling of narrow regions and edge effects, as well as (ii) transfer
of base textures directly between shapes for shape-to-shape transfer,
avoiding distortions due to unnecessary texture parametrization for
each shape. More interestingly, we would like to better understand



the importance of texture and its relations to object geometry, both
for recognition/classification tasks and for object design. Texture can
carry important information about the object style [Liu et al. 2015]
(e.g., fabric patterns can help classify modern versus baroque chairs)
or function [Hu et al. 2016] (e.g., wooden grain can indicate hard
surfaces, while leather can indicate soft cushioned surfaces). Finally,
we believe that the ability to generate realistic textured models and
illumination maps can be further exploited for various design tasks
and for generating on-demand training data for different learning
applications.
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