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Abstract

Discovering 3D arrangements of objects from single in-
door images is important given its many applications such
as interior design and content creation for virtual environ-
ments. Although heavily researched in the recent years, ex-
isting approaches break down under medium to heavy oc-
clusion as the core image-space region detection module
fails in absence of directly visible cues. Instead, we take
into account holistic contextual 3D information, exploit-
ing the fact that objects in indoor scenes co-occur mostly
in typical configurations. First, we use a neural network
trained on real indoor annotated images to extract 2D key-
points, and feed them to a 3D candidate object generation
stage. Then, we solve a global selection problem among
these candidates using pairwise co-occurrence statistics
discovered from a large 3D scene database. We iterate
the process allowing for candidates with low keypoint re-
sponse to be incrementally detected based on the location
of the already discovered nearby objects. We demonstrate
significant performance improvement over combinations of
state-of-the-art methods, especially for scenes with moder-
ately to severely occluded objects. Code and data avail-
able at http://geometry.cs.ucl.ac.uk/projects/
2018/seethrough.

1. Introduction

For many scene understanding tasks such as creating
a room mockup for VR or automatically estimating how
many people a room can accommodate, it is sufficient to
estimate positions, orientations, and rough proportions of
the objects rather than exact point-wise surface geometry.
Given a single 2D photograph, the goal of this paper is to
select and place instances of 3D models, particularly the
partially occluded ones, to recover the photographed scene
arrangement or layout [22] under the estimated camera.

With easy access to large volumes of image and 3D
model repositories and the availability of powerful super-

vised learning methods, researchers have investigated mul-
tiple subproblems relevant to the above goal, such as ob-
ject recognition [17], localization [33], pose prediction [38],
or developed a complete system IM2CAD [23] that selects
and positions 3D CAD models that are similar to the in-
put imaged scenes. While these approaches work reliably
in rooms with relatively low occlusion, under moderate to
heavy occlusion the methods quickly deteriorate. A com-
mon source of failure is that under significant occlusion,
state-of-the-art semantic segmentation or region detection
begins to break down, and hence any system relying on
them also fail (see Figure 1).

Unlike images with limited occlusion where direct
image-space information is sufficient, occluded scenes re-
quire a different treatment. One possibility is to train an
end-to-end network to go from single images to parameter-
ized scene mockups. On the one hand, in our experiments
the networks trained with synthetic 3D scene data do not
easily translate to real-world data. On the other hand, ob-
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Figure 1. We present SEETHROUGH to detect objects (chairs, ta-
bles, cabinets) from single images under medium to heavy occlu-
sion by reasoning with 3D scene-level context information and sig-
nificantly improve detection rate over state-of-the-art alternatives.
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taining real-world training data is difficult to scale as it re-
quires complex annotations in 3D from single images. We
propose an approach that heavily relies on 3D contextual
statistics automatically extracted from synthetic scenes.

Our key insight is that typical indoor scenes exhibit sig-
nificant regularity in terms of co-occurrence of objects,
which can be exploited as explicit priors to make predic-
tions about object identity, placement and orientation, even
under significant inter- or intra-object occlusions. For ex-
ample, a human observer can easily spot heavily occluded
chairs due to the presence of other visible nearby chairs and
a table, as we have a good mental model of typical chair-
table arrangements.

We introduce SEETHROUGH that generates 2D key-
points from input images using a neural network, lifts the
keypoints to candidate 3D object proposals, and then solves
a selection problem to pick objects scored according to ob-
ject cooccurrence statistics extracted from a scene database.
We iterate the process by allowing already selected objects
to reinforce selection of weakly witnessed occluded ones.
The main conceptual novelty is combining deep learning
for keypoint detection and graphical model for handling ob-
ject context information. In other words, although objects
are largely occluded, even partial and contextual evidence
can be used for candidate generation which can in turn be
pruned using object arrangement priors.

We tested our approach quantitatively on a new scene
mockup dataset including partially occluded objects and
show significant improvement of recognition over baseline
methods on multiple quantitative measures. Although our
current implementation is focused on few classes (chairs,
tables, cabinets, bookshelves), the method can be retrained
to other classes with appropriately annotated data.

2. Related Work
Scene mockups. 3D scene inference from 2D indoor im-
ages has recently received significant research focus due
to the ubiquity of the new generation capture methods
that enable partial 3D and/or depth capture. A significant
amount of progress has been made following the early work
of Hoeim et al. [20], first with approximating only room
shape [11, 29, 27, 18], then inferring cuboid-like structures
as surrogate furniture [12, 9, 41, 40, 34] and performing
scene space reasoning using context models [8, 5]. How-
ever, for detailed geometry prediction, the image input is
generally supplemented with additional per pixel depth or
point clouds [25]. Mattausch et al. [30] used 3D point
cloud input to identify repeated objects by clustering sim-
ilar patches. Li et al. [26] utilize an RGB-D sensor to scan
an environment in real time, and use the depth input to de-
tect 3D objects queried from a database. In contrast, our
method works only on single RGB images.

Recently, Izadinia et al. [23] presented the IM2CAD sys-

tem for scene reconstruction with CAD models from a sin-
gle image using image based object detection (using FR-
CNN) and pose estimation approaches. Although their ob-
jective is similar to ours, the performance is bounded by the
individual vision algorithms utilized in their pipeline. For
example, when the segmentation misses an object because
of significant occlusion, there is no mechanism to recover it
in the reconstruction.

3D→2D alignment. Another way to create scene mock-
ups is by directly fitting 3D models to the image. Pose
estimation work [38, 36, 21, 27, 24, 4] also demonstrated
that given object images, reliable 3D orientation can be pre-
dicted, which in turn might help with scene mockups. Lin et
al. [28] used local image statistics along with image-space
features to align a given furniture model to an image. Aubry
et al. [4] utilized a discriminative visual element processing
step for each shape in a 3D model database, which is then
used to localize and align models to given 2D photographs
of indoor scenes. Like most existing methods, their ap-
proach breaks down under moderate to high occlusion. Our
method performs better, as other nearby objects can provide
higher order information to fill in the lost information.

Priors for scene reconstruction. Scene arrangement pri-
ors have been successfully demonstrated in 3D reconstruc-
tion from unstructured 3D input, as well as scene synthe-
sis [14]. Shao et al. [35] demonstrated that scenes with sig-
nificant occlusion can be reconstructed from depth images
by reasoning about the physical plausibility of object place-
ments. Monszpart et al. [31] uses the insight that planar
patches in indoor scenes are often oriented in a sparse set
of directions to regularize the process of 3D reconstruction.
On the other hand, based on priors between humans, Fisher
et al. [15] leveraged human activity priors together with ob-
ject relationships as a foundation for 3D scene synthesis. In
contrast to the complex and high order joint relationships
used in these works, our object centric templates are com-
pact and primarily encode the repetition of similar shapes
(such as two side by side chairs) across pose and location.

3. Overview
In indoor scenes with many objects, we observe that the

environment is not important for the recognition of the un-
occluded object – the shape of the object is clearly visible
and immediately recognizable. However, under occlusion,
the task of recognizing the object necessitates adding 3D
contextual information. State-of-the-art methods based on
FRCNN [33] correctly detect objects that are visible, but
miss partially occluded ones (see inset figure in Section 2).
However, under occlusion, the task of recognition becomes
easier with more contextual and cooccurence information.

Motivated by the above insight, we design
SEETHROUGH to run in three key steps: (i) an image-space



keypoint detection trained on AMT-annotated real pho-
tographs (Section 4.1); (ii) a candidate generation step that
takes the estimated camera to lift detected 2D keypoints
to 3D (deformable) model candidates (Section 4.2); and
(iii) an iterative scene mockup stage where we solve a
selection problem on a graphical model to extract a scene
arrangement that proposes a plausible object layout using a
common object co-occurrence prior (Section 4.3).

4. Method
4.1. Keypoint Detection

At this stage our goal is to detect subtle cues for poten-
tial object placements in a form of keypoints. A keypoint
is a salient 3D point that appears across all objects of the
same class (e.g., tip of a chair leg). We expect that a small
number of (projected) keypoints will still be visible even
under severe occlusions, and be useful in creating reason-
able hypothesis for potential object placement. We repre-
sent this signal as: first, a keypoint map, a per-pixel function
that indicates how likely a particular keypoint is to occur at
that pixel (each keypoint has a separate map mi), and sec-
ond, keypoint locations which define the 2D coordinates for
each keypoint. Both sets of information are used at differ-
ent stages of our algorithm. We collected our own training
data and trained a convolutional neural network to detect a
continuous keypoint probability function, which we further
use to extract candidate keypoint locations.

For each object, we picked Nk keypoints (8 for ta-
bles and cabinets each; 10 for chairs and sofas) and fine-
tuned a variant of ResNet-50 neural network [17] to pre-
dict these keypoint maps in Nk output channels (see sup-
plemental material for architecture details). We also tested
the CPM architecture [37], but it yielded slightly inferior
performance. While the latter focuses on keypoint detec-
tion it was pre-trained on human poses rather than general
images, which is why we believe CPM did not generalized
as well to our particular task (see supplemental material).

The above network predicts continuous keypoint maps
M := {m1, ...,mNk

}, and to extract the final keypoint lo-
cations (2D positions in the image) we used local maxima
above a threshold τm (Figure 2). We denote the set of these
keypoint locations by Q := {Q1, . . . , QNk

}.

single image keypoint maps keypoint locations

keypoint
network
keypoint
network

Figure 2. We trained individual neural networks on images to de-
tect keypoint maps, which are then converted to 2D keypoint loca-
tions/thresholding and non-maximal suppression.

4.2. Candidate Object Detection

The goal of this step is to propose multiple candidate
objects based on the detected keypoints. While we do not
know how to group points, we observe that a very small
number of keypoints (as few as two) belonging to the same
object, provide enough constraints to infer the scale and the
orientation of a proxy 3D object. Hence, we can generate
multiple candidates even with a sparse signal under mod-
erate to high levels of occlusions. Using these generated
candidates, we can recast the global inference problem as
a discrete graph optimization problem, where we only need
to solve for indicator variables, selecting a subset of candi-
dates. Thus, we want higher recall at the expense of lower
precision in this step. Furthermore, in order to incorporate
a slightly bigger context than a single keypoint, we select
subsets of points that can compose an object. At training
time we learn a deformable template from a database of 3D
models, and at test time we optimize the fitting of these tem-
plates to various subsets of keypoints.

Object template. Given a database of consistently
aligned 3D models M with manually labeled keypoints we
use Principal Component Analysis (PCA) to project 3D co-
ordinates of keypoints to a lower-dimensional space (we
take eigenvectors λ1, ..., λk that explain > 85% of the vari-
ance). Our template is parameterized by a linear combi-
nation of these eigenvalues with weights p = [p1, ..., pk]
(representing offset from the mean λ0). The final object
template is defined by a weighted linear combination of the
eigenvectors: T (p) := λ0 +

∑
i piλi. Note that we build

such models for each individual object class, but do not
model the parameter correlation across class.

We formulate an optimization problem where we solve
for object parameters (i.e., p) while making sure that the
object aligns with the detected keypoints. To relate our 3D
deformable model to 2D images, we need a camera esti-
mate. We use a variant of Hedau et al. [19] to estimate a
rotation matrix CR with respect to the ground plane, the
focal length Cf , and define the camera’s location Ct to be
at eye height (1.8m) above the world origin, giving camera
parameters C := [CR, Cf , Ct]. For each object we solve
for a 2D translation across the ground plane t, azimuth θ,
scale s, and 3D object template parameters p. Hence, the
reprojection zi of the i-th keypoint to image space:

zi := ΠC (Rup(θ) s ki(p) + t) , (1)

where ki(p) = [T (p)]i is a keypoint on the deformed tem-
plate, Rup is a rotation around the up vector, and ΠC is a
projection to the camera space.

As described next, we fit our template object in two
stages: first, we propose a candidate based on a pair of
points, and then, we refine these candidate parameters with
respect to all keypoint maps.



(i) Initial proposals. To propose initial object candidates
we sample all pairs of detected keypoints. We use a pair
because it gives the smallest set to sample that provides
enough constraints to extract an initial guess for object
translation, scale, and orientation. For each pair, we ini-
tialize as t = 0, θ = 0, s = 1, p = 0, and optimize:

Linit =
∑

i∈{u,v}

‖zi − ki‖2 + α1‖s− 1‖2 + α2‖p‖2︸ ︷︷ ︸
regularizer (Lreg)

, (2)

where α1 and α2 are respectively the weights balancing
scale and deformable template parameters (α1 = 1 and
α2 = 1 in our tests).

(ii) Parameter refinement. For each of the initial pro-
posals extracted above, we refine the fitting. Specifically,
instead of considering point-locations, we define our objec-
tive with respect to soft keypoint maps mj , maximizing the
probability of template corners to align with keypoints pre-
dicted by the neural network, i.e.,

L =
∑

i∈{1,...,Nk}

‖1−mi(zi)‖2 + Lreg, (3)

with Lreg as defined in Equation 2. If L < τu, we add the
final parameters as a candidate placement to our candidate
placement set O.

Selecting a 3D mesh. For the results presented in this pa-
per we show 3D meshes rather than object templates. Par-
ticularly, we pick the closest 3D model from our database
by projecting its keypoints into the object PCA space, find-
ing the nearest neighbor of the deformed template, and fi-
nally deforming it using the optimized parameters p. For
scenes with multiple instances of the same object, we pick
a consistent 3D model to place (based on inferred object
size attributes).

4.3. Scene Inference

We do not expect all individual objects selected as can-
didates to be in the scene, since they might overlap, or have
inconsistent arrangement. First, we capture scene statis-
tics obtained from a large scene dataset with a probabilistic
model, and then use the model to formulate an alternating
discrete and continuous optimization.

Learning scene model. We model higher level scene
statistics via a graphical model where each object is a node
and edges between pairs of nodes capture object-to-object
co-occurrence relationships. We used a Gaussian Mixture
Model (GMM) with Nm (set to 5 in our tests) mixture
components to model relative orientation δθ and transla-
tion δt of pairs of objects from a very large synthetic scene
dataset [42]. We only take into account objects that are
within a distance δr = 1.5m from each other, reasoning

that far-away objects have weaker relationships. We use
Expectation-Maximization algorithm to fit the GMM and
add a small bias (0.01) to the diagonal of the fitted covari-
ance matrices since objects in the database are axis-aligned.

Graph optimization. We formulate a graph labeling
problem to decide which of the candidate objects should
be included in the scene mockup, denoted by indicator vari-
able γi ∈ {0, 1}, where γi = 1 iff object Oi is included.
We minimize the objective:

Lgraph :=
∑
i

γiUi +
∑
i,j

γiγjPi,j , (4)

where Ui is a unary penalty for an included object, and Pi,j
is pairwise penalty for a pair of included objects. We de-
fine the unary energy by projecting object’s keypoints to
the image and convolving the resulting keypoint map with
a Gaussian, following the same procedure we used to create
ground truth keypoint maps. This provides a location map
n. And we set:

Ui := −logit
(
‖n�mi‖F
‖n� n‖F

)
, (5)

where ‖ · ‖F represents the Frobenius norm, � represents
the Hadamard product, and logit(x) = log (x/(1− x)).
Note that since we do not expect a single placement to ex-
plain the entire keypoint location map, we setup the score
as a multiplicative one, with the value only being depen-
dent on the agreement of the actual keypoints the placement
exhibits. We define the pairwise energy using the GMM
model learned from the scene dataset:

Pi,j := −logit
(
GMM(δi,jθ , δi,jt )

)
, (6)

where δi,jθ , δi,jt are the relative orientations and translation
of the objects oi, oj . Finally, we solve for the indicator vari-
ables {γi} using OpenGM [3] by converting the above for-
mulation into a linear program and feeding it to CPLEX [1]
to find the final set of selected objects.

Refined object fitting. After selecting the set of objects,
the scene mockup is ready. However, we found that our
scene priors can also improve the initial object fitting re-
sults. To achieve this, we add a term from our GMM model
to the regularization term (Lreg) in object fitting. We go
through all candidate objects and re-optimize their param-
eters, keeping the selected objects fixed. As noted by Ol-
son et al. [32], the structure of the negative log-likelihood
(NLL) of a GMM does not lend itself to non-linear least
squares optimization. Instead, we approximate the NLL of
the full GMM by considering it as a Max-Mixture, reducing
the NLL to the weighted distance from the closest mixture
mean. We define the Max-Mixture likelihood function

pMax(δ) = max
i
wiN(δ|µi,Σi),



where δ =

[
δt
δθ

]
is the relative translation and orientation

of the new candidate w.r.t. the already placed object, and
wk is the weight of the kth mixture in the model. We use
the sum of negative log-likelihoods of these terms for all
selected objects that are within a distance of δr to the refined
candidate:

− log(pMax(δ)) = min
k

1

2
(δ−µk)TΣ−1k (δ−µk)−log(wkηk),

where N(µ,Σ) represents the normal distribution, and ηk
is the Gaussian normalization factor for the kth mixture.
At optimization time, during each step we find the mixture
component k∗ that minimizes this function, and then opti-
mize w.r.t. the negative log likelihood of the Gaussian of
that component alone, resulting in the following term to be
added to the objective function Lreg (Equation 2):

1

2
(δ − µk∗)TΣ−1k∗ (δ − µk∗). (7)

Refined selection. Refined candidates and objects se-
lected for the mockup can help in placing additional objects
that have subtler cues. Hence, we iterate between refined
fitting and refined selection processes. In the refined se-
lection, we assume that previously selected objects cannot
be removed, and add the unary term to favor placing new
candidates, i.e., for each candidate placement in the second
iteration, we add an extra cost to Ui (Eq. 5) as:

−
∑
k

logit(GMM(oi, o
∗
k)), (8)

where {o∗k} are the objects selected at previous iterations.

5. Results and Discussion

5.1. Training and test data
(a) 2D keypoints on indoor images. We downloaded
5000 images from the HOUZZ website using keywords like
living room, kitchen, dining room, meeting room, etc. We
utilized the Amazon Mechanical Turk platform to obtain
keypoints on the images requiring at least 3 workers to agree
per image. For each image, we asked the turkers to mark
the keypoints of the objects. Please refer to the supplemen-
tal for details about the web-based annotation interface. We
convolved these keypoints with a Gaussian filter to simplify
the CNN’s task of learning smooth filters and averaged the
results. These were used in addition to CAD models mock-
ups available in the ObjectNet3D dataset [39], which we
used to train keypoint detectors for sofa, cabinet, and table.
We used 90,127 images containing 201,888 labeled objects
for training the networks.

(b) Scene mockup groundtruth. In order to quantita-
tively measure the performance of SEETHROUGH and com-
pare with alternate methods, we require a set of ground
truth annotated scenes, i.e., images for which the relevant
3D CAD models have been placed manually. We are not
aware of a similar dataset with mockups for 3D objects
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including the (par-
tially) occluded
ones. Hence,
we setup another
annotation tool in
which an object can be placed by clicking and dragging, as
well as by annotating a number of keypoints of the object,
and optimizing for its location and scale. Moreover, objects
can be copied and translated along their local coordinate
axes, allowing for quick and precise annotation. We used
the automatically estimated camera parameters for the
automatic refinement, while discarding any image with
grossly erroneous camera estimates. We used the tool to
annotate 300 scenes (see inset for visibility statistics among
randomly selected HOUZZ dataset). We found the NYU
and SUN datasets to contain very limited occlusion and
hence not suitable for our tests. The SUNCG dataset has
more cluttered instances, but we found the scene statistics
to be different compared to real-world scenes.

(c) 3D models and scenes. For our database models,
we used the models from the ShapeNet [7] database and
for scene statistics, we used 45K houses from the PBRS
dataset [42]. While the latter comes with 400K physically-
based renderings, we tried using these synthetic images to
pretrain networks for predicting keypoint maps, but found
that fine-tuning a variant of ResNet-50 with weights trained
on ImageNet produced more accurate results.

5.2. Performance Measures and Parameters

Hyperparameters. Our optimization pipeline depends
on a number of parameters that we optimized using Hyper-
Opt [6]. We used the LOCANG measure as our objective
measure. As ground truth data, we used 10 scenes fully an-
notated specifically for this purpose, in the same way as the
data used for evaluation (see above).

Keypoint detection. We evaluated the accuracy of key-
point detection (see Figure 3) for each of the object classes.
For objects with heavy occlusion, we report keypoint de-
tection with 2 or more keypoints detected with a precision
of 5 pixels or better (image size 256 × 256) since in those
cases we have sufficient information to propose 3D candi-
dates. For comparison, we evaluate state-of-the-art region
detector FRCNN detection. Using confidence threshold of
0.5, RCNN boxes contained on 13.5% of keypoints from an
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Figure 3. Image-space keypoint detection precision. Images show
qualitative image-space keypoint detected for different objects.

annotated chair object against 70+% by our keypoint detec-
tion based approach.

Quantitative measures. We use source and target to de-
note the two scenes between which a measure is computed.
We specifically do not use ‘result scene’ and ‘ground truth
scene’ as the ground truth acts as a target to compute preci-
sion, and acts as source to compute recall.

We denote the objects in the source and target scene as
oS ∈ S, oT ∈ T , respectively. We use J3(oS , oT ) and
J2(oS , oT ) to represent the Jaccard index or intersection-
over-union (IoU) of the bounding boxes of oS and oT in
3D world space and 2D screen space, respectively. Fi-
nally, given an object oS we define the ‘J∗i correspon-
dence’ with T as the object with the MaxIoU with oS as:
J∗i (oS , T ) := arg maxoT∈T Ji(oS , oT ). Intuitively, this re-
turns, for a given object, the best matching object from the
other scene in terms of overlap.
(a) IOU3D: This measures average IoU for 3D bounding
boxes around objects. Specifically, given a source scene

and a target scene, we average MaxIoU across all objects
in the source scene (measuring IoU overlap with the corre-
sponding object in the target).
(b) IOU2D: Similar to IOU3D, this measure averages IoU
for 2D bounding boxes around projected objects.
(c) LOC: This measures the fraction of correct locations of
objects in the source scene with respect to the target. We
consider every object in the source scene that has a J∗3 cor-
respondence over a threshold τJ to have a correct location.
(d) LOCANG: Similar to LOC, this measures additionally
requires the angle difference to be under a threshold τθ.
(e) ANGDIFF: This measures the average angle difference
for the objects that have a correct location.

5.3. Baselines: State-of-the-art Alternatives

We are not aware of prior research focusing on produc-
ing scene mockups in the presence of significant occlu-
sion. Hence, we created two baselines by combining rel-
evant state-of-the-art methods. We convert the output of
each baseline (in both cases 3D pose but 2D image space
locations of objects) to our 3D scene mockup format.

(a) SEEINGCHAIRS3D. Aubry et al. [4] proposed a
method to find chairs by matching so-called ‘discrimina-
tive visual elements’ (DVE) from a set of rendered views
of 1000+ chair models with any input image. These DVEs
are linear classifiers over HOG features [10] learned from
the rendered views in a discriminative fashion. At training
time, they are learned at multiple scales while keeping only
the most discriminative ones for matching. At test time, a
patch-wise matching process finds the best-matching image
and rendered patch pairs, and then finds sets of pairs that
come from the same rendered view (see [4] for details).

The above method outputs scored image space bounding
boxes together with a specific chair model and pose. For
our 3D performance measures, however, we need the out-
put in the form of a 3D scene. Hence, we convert each set
of bounding box, pose, and chair model to a 3D scene. Us-
ing our estimated camera, we optimize the location (in the
xz-plane) of the 3D model without changing its pose, such
that the 2D bounding box of the projected model matches
as closely as possible with the detected bounding box using
a least-squares formulation (solved using Ceres [2]).

(b) Im2CAD (FRCNN+3DINN). We combine a convo-
lutional neural network (CNN) trained for image-space ob-
ject detection and another CNN trained for 3D object inter-
pretation mimicking the Im2Cad system. Specifically, we
use FasterRCNN [33] to extract bounding boxes of objects
from the input image and then feed these regions of interest
to 3D-INN [38], which produces a templated object model
consisting of a set of predefined 3D keypoints as well as a
pose estimate. Since our set of keypoints is a subset of the
keypoints produced by 3D-INN, we use our 3D candidate



Figure 4. Qualitative comparison of the baseline methods: SEEINGCHAIRS (orange) and IM2CAD (blue) against SEETHROUGH (green).
Annotated groundtruth poses (gray) are provided for reference in the top view (only chairs shown in top view to avoid clutter). Note that
our approach has higher recall and correctly aligns them compared to the others.
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Figure 5. Quantitative performance of SEETHROUGH against the state-of-the-art method-based baseline methods. We outperform the
baselines significantly across all the measures. Please refer to supplemental for the tabulated values.

generation part of SEETHROUGH to convert the extracted
keypoints to a 3D object for the resultant scene mockup.

5.4. Evaluation and Discussion

We ran SEETHROUGH and the above baseline methods
on the full ground truth annotated scene set (Section 5.1).
A sampling of results can be seen in Figure 4. (Further
visualization for 100 scenes in our groundtruth set are in
the supplemental.)

The baseline methods perform well when there is no oc-
clusion in the scene. Specifically, objects that are clearly
visible are reconstructed reliably as the direct visual infor-
mation is sufficient to make an accurate inference about

the objects’ pose and identity. However, when objects are
partly occluded, the methods break down quickly. In con-
trast, SEETHROUGH, by incorporating co-occurrence ob-
ject model, is able to recover from these situations.

This difference in performance is also reflected in the
quantitative results (see Figure 5). Our method outperforms
the baselines on all counts. Additionally, in Figure 6, we
show how the LOCANG measure changes under varying
thresholds of angle (τθ) and IoU (τJ ).

Performance under increasing occlusion. In order to
specifically test performance under varying occlusion, we
sorted the groundtruth annotated HOUZZ dataset into cate-
gories based on the extent of the visible objects. We approx-
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Figure 6. Performance variation according to LOCANG F1 mea-
sure for SEETHROUGH and the two baseline methods under vary-
ing angle and IoU thresholds. We perform significantly better
across both the threshold ranges.

imate visibility as follows: we compute how many objects
lie along view rays connecting the estimated camera loca-
tion with points on a discrete grid on the image plane. We
used the objects’ bounding boxes for this visibility com-
putation. Higher values denote more occlusion (as there
are more objects along the view rays). Figure 1 shows
that while all the three methods perform comparably un-
der low occlusion, only SEETHROUGH continues to have a
high success rate under medium to heavy occlusion.

Effect of multiple iterations. As an important feature, in
Section 5.5, we demonstrate the positive utility of multiple
iterations to SEETHROUGH. One of our key observations is
that high-confidence objects (e.g., unoccluded objects) are
easier to detect, and hence can provide valuable contextual
information in reinforcing the weaker signals (e.g., partially
occluded objects). This behavior results in higher detection
rates using iterations and believed to be also functional in
the human perception systems [13, 16].

Utility of synthetic data. We found that training on syn-
thetic datasets [42] for predicting image-space keypoint
maps led to unsatisfactory results. For this experiment, we
took all renderings from 400K images that contain at least
one of the annotated objects and reprojected the keypoint
locations from corresponding 3D models into these ren-
ders, yielding one image/keypoint map pair as training data
per render, resulting in a total of 8000 image/keypoint map
pairs. We experimented with different setups: (i) network
trained with only synthetic data; (ii) network first trained
with synthetic data, and then refined using real data, and
(iii) network trained with only real data.

The best performance on the test set resulted from setup
#iii, i.e., training with only real data. One likely explana-
tion is that training the network with the synthetic data first
steers away the network weights from those that were the
result of the ImageNet pretraining, which already encom-
pass a high general understanding of real photographs.

5.5. Ablation Study

We evaluated the importance of the individual steps of
SEETHROUGH to the final performance (see Figure 7 and
supplemental). Specifically, we ran our pipeline on the full
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Figure 7. Ablation study evaluating the importance of the different
stages of our system.

test set under two weakening conditions: (a) we disable all
pairwise costs and run the remaining pipeline based solely
on the keypoint location maps; and (b) we disable itera-
tions by running the second and third stage only once, thus
removing the possibility of the candidate generation stage
benefiting from previously placed objects.

Discussion. Although IOU2D recall increases when dis-
abling scene statistics (option #a), the precision goes down
significantly. This is true as the pairwise costs by them-
selves do not propose new objects – they only make output
mockups more precise by pruning objects that do not agree
with others. In contrast, using only a single iteration (op-
tion #b) increases precision, but recall takes a significant hit.
This is not surprising, as in the later iterations the keypoint
location maps have decreased influence relative to the pair-
wise costs. As a result, while objects with weaker keypoint
response are more easily found, false positives also become
more likely. Overall, the combined IOU2D F1 measure is
highest for the full SEETHROUGH as well as the LOCANG
F1 measure.

6. Conclusion
We proposed SEETHROUGH, a method for automatically

finding partially occluded objects in a photograph of a struc-
tured scene. Our key insight is the incorporation of higher
level scene statistics that allows more accurate reasoning in
scenes containing medium to high levels of occlusion. We
demonstrate considerable quantitative and qualitative per-
formance improvements across multiple measures.

Our method suffers from limitations that suggest a num-
ber of future research directions. First, we plan to extend
the evaluation to more classes of objects beyond those con-
sidered. Second, one can explore higher fidelity models to
better recover fine scale features in the recovered models.
Finally, we would like to explore templates that can express
a broader understanding of the multi-object spatial relation-
ships including symmetry and regularity.
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