
Designing Chain Reaction Contraptions from Causal Graphs

ROBIN ROUSSEL, University College London

MARIE-PAULE CANI, LIX, École Polytechnique

JEAN-CLAUDE LÉON, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK

NILOY J. MITRA, University College London

Initial
scene layout

B

G

C

H I

F

A M

E

L

J K

D

Input
causal graph

Robustness
optimization

A: Ball 1 rolls
on top track

B: Ball 1 hits
gate lever

H: Ball 2 rolls on
pivoting track

F: Ball 1 falls
into teapot

Optimized
scene layout

Fig. 1. Our system takes as input an initial scene layout associated with a causal graph of expected events. It then combines simulation, search and learning

to build a success probability measure with respect to layout perturbations, and optimizes the layout for robustness against manual placement errors during

assembly. The optimized layout is then exported as a guide sheet and used to successfully assemble complex chain reactions in the physical world.

Chain reaction contraptions, commonly referred to as Rube Goldberg ma-

chines, achieve simple tasks in an intentionally complex fashion via a cas-

cading sequence of events. They are fun, engaging and satisfying to watch.

Physically realizing them, however, involves hours or even days of manual

trial-and-error effort. The main difficulties lie in predicting failure factors

over long chains of events and robustly enforcing an expected causality

between parallel chains, especially under perturbations of the layout. We

present a computational framework to help design the layout of such con-

traptions by optimizing their robustness to possible assembly errors. Inspired

by the active learning paradigm in machine learning, we propose a generic

sampling-based method to progressively approximate the success probabil-
ity distribution of a given scenario over the design space of possible scene

layouts. The success or failure of any given simulation is determined from

a user-specified causal graph enforcing a time ordering between expected

events. Our method scales to complex causal graphs and high dimensional

design spaces by dividing the graph and scene into simpler sub-scenarios.

The aggregated success probability distribution is subsequently used to opti-

mize the entire layout. We demonstrate the use of our framework through a

Authors’ addresses: Robin Roussel, University College London, robin.roussel.15@ucl.ac.

uk; Marie-Paule Cani, LIX, École Polytechnique, marie-paule.cani@polytechnique.edu;

Jean-Claude Léon, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, jean-claude.

leon@ense3.grenoble-inp.fr; Niloy J. Mitra, University College London, n.mitra@ucl.

ac.uk.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3306346.3322977.

range of real world examples of increasing complexity, and report significant

improvements over alternative approaches.

CCS Concepts: • Computing methodologies → Shape analysis; Model
verification and validation; Physical simulation.

Additional Key Words and Phrases: computational design, robust design,

causal graphs, chain reactions, success probability distribution

ACM Reference Format:
Robin Roussel, Marie-Paule Cani, Jean-Claude Léon, and Niloy J. Mitra. 2019.

Designing Chain Reaction Contraptions from Causal Graphs. ACM Trans.
Graph. 38, 4, Article 43 (July 2019), 13 pages. https://doi.org/10.1145/3306346.
3322977

1 INTRODUCTION

Chain reaction contraptions, also known as Rube Goldberg ma-

chines, achieve simple functions from intentionally complex se-

quences of events (see Figure 2). These machines sit at the intersec-

tion of entertainment, art and engineering; as such, they are featured

in TV commercials [Honda 2003], exhibited as art pieces [Fischli and

Weiss 1987], and used for educational purposes in classrooms and

science fairs [Kim and Park 2012]. A particularly compelling aspect

of these setups is the careful management of risk: a chain of events

is all the more captivating when it looks like it could fail at multi-

ple points. Contraption builders can spend days trying to assemble

these sophisticated structures in a reasonably predictable way, rely-

ing on a rich community knowledge including rules of thumb and

specific procedures to try to minimize risks of failure [Price 2017].

ACM Trans. Graph., Vol. 38, No. 4, Article 43. Publication date: July 2019.

https://doi.org/10.1145/3306346.3322977
https://doi.org/10.1145/3306346.3322977
https://doi.org/10.1145/3306346.3322977

43:2 • Robin Roussel, Marie-Paule Cani, Jean-Claude Léon, and Niloy J. Mitra

Fig. 2. In a now-famous cartoon series, Rube Goldberg invented complicated

gadgets performing simple tasks in convolutedways. Thesemachines are fun

and exciting as they delicately balance apparent unpredictability and careful

risk management. In this paper, we focus on computationally optimizing

the layout of real-world Rube Goldberg machines. "Professor Butts and the

Self-Operating Napkin" is from Wikipedia (public domain).

Despite these efforts, physical realization of such chains of events

remains a delicate art, involving a tedious and very time consuming

trial-and-error design process.

Authors of chain reactions face two main challenges. First, small

variations at one step may result in wider unintended deviations

further down the line (aka the butterfly effect). Limitations in our

spatial cognitive abilities prevent us from considering all possible

outcomes of a sequence of physical events [Schwartz and Hegarty

1996]. As a consequence, long chains of events – even individually

simple ones – can easily fail due to a single unwanted side effect. For

instance, dominoes arranged along tight, highly curved paths can

fall onto each other in an unexpected order. Moreover, orchestrating

complex sequences may require carefully synchronizing several

simpler sub-chains that run in parallel, or at least being able to

robustly predict the completion order of these sub-chains. In other

words, a target causality between events is often sought, such as a

lid being removed from a cup so that a ball can fall in it. This kind of

effect is essential to make contraptions more visually engaging, as

they make potential failures points more obvious to the spectator.

Rube Goldberg machines are an example of real life designs where

authoring and assembly are several orders of magnitude longer than

the final execution. Hence, despite the efforts of many passionate

practitioners, such contraptions are often limited to linear chains

and lack non-trivial causal dependencies involving the synchroniza-

tion of parallel branches. In this paper, we investigate the use of

computational design to simplify and accelerate the realization of

chain reaction contraptions, notably by making designs robust to

modeling bias and perturbations induced by manual assembly.

Interestingly, developing a computational design tool for such

machines is quite different from design problems already tackled

in computer graphics: while the creation of objects and assemblies

from target motion has already been investigated (see the survey

by Bermano et al. [2017]), fabrication was done by connecting 3D

printed or laser cut parts. By contrast, we face two extra challenges:

first, Rube Goldberg machines are fully assembled by hand, and

each placement error may jeopardize the whole execution. Second,

only pre-existing and possibly imperfect real-world objects are used

as components. The designed layout therefore needs to account

for their variability and approximately known features. While the

management of variability and errors is discussed in industrial con-

texts [Brewer et al. 2010], the prevalence of intentional risk-taking

in Rube Goldberg machines makes them a challenging case study.

The key idea of this paper is to build a simulation-based success
probability distribution (SPD) for the intended scenario conditioned

on the layout parameters of the contraption assembly. The input

design is subsequently optimized under this estimated probability

to improve the robustness to perturbations of the machine layout.

More precisely, we start with (i) an initial set of primitive objects

(e.g., ball, track) arranged in a coarse scene layout provided by

the user; (ii) a set of predefined events (e.g., ‘rolling on’, ‘falling’)

arranged in a causal graph specifying their expected event order as

in Figure 1; and (iii) a limit range for each layout parameter. Note

that the initial layout does not need to yield a successful run; instead,

we expect to find such successful layouts in the provided parameter

space. Efficiently computing a probability of success from such input

requires solving two challenges: first, exploring the potentially high-

dimensional design space to find enough successful instances; and

second, building an estimator that is accurate near the relevant

regions of the design space.

We combine efficient search and machine learning techniques to

address both issues. We tackle the first challenge using an adaptive

sampling algorithm that progressively trades exploration of the de-

sign space for exploitation of the discovered successful regions. We

formulate the second challenge as a binary success/failure classifi-

cation task, where features are layout parameters and labels are de-

rived from simulations run under the supervision of the causal graph.

The success probability given the layout is therefore expressed as

the probability of belonging to the ‘success’ class, as provided by the

classifier; it is further refined with an active learning technique. Sim-

ulations are run with a fast rigid body engine [Coumans 2018], as we

posit that a relatively coarse approximation of reality is sufficient to

build a confidence metric. Additionally, we use sensitivity analysis

to identify events holding a critical role in the sequence and map

their individual probability of success to the relevant design parame-

ters; this allows our method to scale to a high number of dimensions.

Once a full SPD is built, we increase the robustness of the layout by

identifying and optimizing weak points where the design is likely

to fail. Note that our optimization takes place in a space with voids,

i.e., containing physically impossible configurations preventing any

meaningful measure of success.

We evaluate our framework on real-world contraption examples

of increasing complexity, both quantitatively (by computing an in-

tegral sampling-based robustness metric and comparing the output

of our method against several baselines) and qualitatively (by con-

structing these examples in real life). Our results demonstrate that

we consistently generate robust designs even in high dimensional

configuration spaces. In summary, our contributions are (i) a gen-

eral methodology to optimize chain reaction contraptions; (ii) a

general simulation-based measure of robustness to assembly errors;

and (iii) a divide-and-conquer method to efficiently compute this

function for complex sequences of events.

ACM Trans. Graph., Vol. 38, No. 4, Article 43. Publication date: July 2019.

Designing Chain Reaction Contraptions from Causal Graphs • 43:3

2 RELATED WORK

Fabrication-aware motion design. Real-life Rube Goldberg ma-

chines are a form of kinetic art. In the context of computational de-

sign and fabrication, researchers have investigated both kinematics

and dynamics of machines from various functional considerations.

Notable examples for kinematics include: periodic motion design for

assemblies of gears and pulleys [Ceylan et al. 2013; Coros et al. 2013;

Zhu et al. 2012] and linkages [Bächer et al. 2015; Thomaszewski et al.

2014], as well as folding [Li et al. 2015] and motion sequences [Garg

et al. 2016]. Examples of dynamics-driven design include: adapting

internal mass distribution to allow spinning [Bächer et al. 2014], or

configuring parts for pneumatic [Ma et al. 2017] and elastic [Chen

et al. 2017] objects as well as wind-up toys [Song et al. 2017]. Dif-

ferent from these examples, our contraptions are relatively large

and their components may be loosely or even not constrained to

each other: rather, collision and friction dynamics are predominant,

and difficult to model accurately. Previous works in computational

design generally neglect the sensitivity of solutions to modeling

bias and fabrication errors, which can be significant when hand as-

sembly with preexisting components is required. As Rube Goldberg

machines typically reuse and subvert common objects, we consider

the shape and physical properties of all components as given, and

aim to obtain a robust design by only optimizing positions and ori-

entations. The work of Furuta et al. [2010] appears closer to our

goal, as the authors propose an interface to design kinetic art pieces;

however, their tool only allows to previsualize the contraption’s

behavior, whereas ours actively optimizes the layout to improve the

robustness of the chain reaction.

Simulation-based design functions.Agrowing number of works

in computational design combine the parametrization of a 3D model

with a black-box physically-based simulator to build functions di-

rectly in the design space. This approach is general, parallelizable,

and can leverage efficient spatial data structures [Shugrina et al.

2015] and machine learning techniques [Umetani and Bickel 2018].

Such design functions are useful for exploration, allowing interac-

tive visualization of complex physical phenomena including flight

trajectory [Umetani et al. 2014], fluid flow [Umetani and Bickel

2018], and various material properties such as heat and stress distri-

bution [Schulz et al. 2017]. More general measures of performance

and validity can be computed as well to provide user guidance [Shug-

rina et al. 2015] or enable exploration of design trade-offs [Schulz

et al. 2018]. Different from these works, we use simulations to build

a measure of success probability. Since our goal is to find a design

robust to modeling and assembly inaccuracies, we only need to pre-

dict the occurrence of functionally important events (e.g., collision,

rolling on a track, falling into a container, etc.) and not the exact

motion, which allows us to use a faster (albeit less realistic) rigid

body simulator. Moreover, we can focus the computational effort

around the discovered successful regions of the design space. Lastly,

we leverage the causal graph to decompose the global success prob-

ability into simpler functions defined on subspaces of the design

space, allowing to scale to a high number of dimensions.

Computational models of causality. Event graphs have been

used for long to represent storyboards in narrative design. Pioneer-

ing work from Kalra and Barr [1992] used directed graphs to analyze

and model time and events in computer animation. While our causal

graph is inspired from their event graph, our goal is to exploit it to

create a real world contraption. Chains of events were also studied

for video games and computational narratology, e.g. with the goal

of finding a consistent causal order among events [Riedl and Young

2006]. In our setting however, the causal chain is fully specified

by the user. In the context of mechanical assemblies, researchers

have investigated how representations can help analyze and under-

stand causal relations in mechanisms [Mitra et al. 2010; Schwartz

and Hegarty 1996], while more recently, functional graphs have

also been used for reconstruction [Lin et al. 2018]. By contrast, our

work uses the causal graph to build a measure of robustness that is

subsequently used to optimize the design.

3 CONCEPTS AND DEFINITIONS

We start by introducing some key concepts with an illustrative

example (see Figure 3). Let us consider the case of a ball initially

at rest on a tilted plank. The ball starts rolling on this plank, gains

momentum, leaves the plank, and hits the head of a row of dominoes,

which all gradually topple until the last one finally comes to a halt.

(0)

(1) (2)

(3) (4)

A: BALL ROLLS ON TRACK

B: BALL HITS DOMINO

C: DOMINO 1 TOPPLES

D: DOMINO 2 TOPPLES

E: DOMINO 3 TOPPLES

CAUSAL
GRAPH

TIME
LINE

(0) (1) (2) (3) (4)

A B C D E

Fig. 3. simple scenario. A ball rolls on a track and triggers the fall of a

sequence of dominoes. A succession of snapshots taken from the simulation

(top) is matched with the events of this scenario’s causal graph (bottom).

(Ticks along the timeline are uniformly spread for clearer visualization.)

We have just described a scenario, the central component of our

framework. A scenario is a triplet S = {S,G,D} consisting of a scene
S , a causal graph G and a design space D.
Scene. A scene S is a collection of m 3D objects {oi }

m
i=1 laid out

in space and organized as a scene graph in which a child object’s

transform (i.e., position and orientation) is defined in the local frame

of reference of its parent. This graph is useful for objects whose

initial position is more intuitively described relative to others (e.g.,

a ball resting on a track). For the sake of convenience, we assume

that each scene is made of a small number of primitives (in this

example, ball, track, dominoes) arbitrarily repeated, combined, and

constrained to form an initial setup. Figure 4 shows all the primitives

implemented in our system. Each primitive object oi is built from

ACM Trans. Graph., Vol. 38, No. 4, Article 43. Publication date: July 2019.

43:4 • Robin Roussel, Marie-Paule Cani, Jean-Claude Léon, and Niloy J. Mitra

Ball Box Cylinder Domino run

Lever Pivot Rope-pulley

Rope

Goblet Track

Static Dynamic unconstrained Dynamic constrained Visual

XY

Z

Fig. 4. Primitive types. The above primitive types are available to the user

in our implementation. The color hues correspond to the different types of

behavior in the physically-based simulation. Arrows indicate the motion

type allowed by the constraint. Please see the supplementary for details.

a set of predefined design parameters Θi = {θ
j
i }, including both

geometric (e.g., length, width) and physical (e.g., mass) parameters.

Causal graph. A causal graph G organizes a collection of events
expected to happen during the simulation. An event e = (ce , se) has a
specific definition in our framework: it is an entity characterized by a

condition ce and a state se . The event condition is a Boolean function

of time and one or more objects ce (t ,oi , . . .) that evaluates one or
more statements about the transform, velocity and/or geometric

relationship of these objects at time t . The event state se (t) is one of
{asleep, awake, success, failure}. Let (tk)k≥0 be the sequence

of simulation times. Any event but the first starts with se (t0) =
asleep, and is triggered awake at some time te by the success of
all of its predecessor(s). The condition ce (tk) is only evaluated while
se (tk−1) = awake. Since we cannot wait indefinitely for the event

to happen, we introduce a timeout duration tmax
such that

se (tk) ←

{
success if ce (tk) = 1 and te ≤ tk < te + t

max,

failure if ce (tk) = 0 and tk ≥ te + t
max.

https://www.overleaf.com/project/5a436e7525871b781d2c84e8 The

timeout tmax
is manually set to match the longest expected time be-

tween two events (2s in our experiments). Figure 5 shows the events

currently supported in our system. We note that our formulation

induces a discrepancy with the intuitive definition of some events:

the act of falling, for instance, is not instantaneous – it lasts a cer-

tain amount of time. In our system, however, the switch success or
failure is immediate; hence, in such cases, successmerely means

that the event has started. In practice, we found this formulation

sufficiently expressive for our needs.

Events are tied together as nodes of the causal graph, which is a

directed acyclic graph with a single root node (i.e., only one starting

event) and one or more terminal branches. Using a graph rather than

a single timeline allows to account for events happening in parallel in

more complex scenarios (see Figure 6). Each edge (ei , ej) enforces a
temporal ordering of the two events it connects. Hence, for instance,

if the ball was to fall on the last domino instead of the first, the

causal graph would be violated because the intermediate expected

o1 moves o1 hits o2 o1 topples o1 enters o2

o1 falls o1 rises o1 pivots o1 rolls on o2

Fig. 5. Event types. The above events are supported in our implementation.

Each event’s condition ce (t) is a function of the spatial transform (and

corresponding time derivative) of the target object(s) at time t . Events may

also have a negated version (e.g., ‘o1 stops’ being equivalent to ‘o1 does not
move’). Please see the supplementary for details.

events have not happened. We note that such a causal graph is not

necessarily a tree: two branches may converge, signifying that all
parent events need to happen before the current one. The scenario
as a whole reaches its termination condition when either (i) the last

event of each branch has been reached (global success), or (ii) at
least one event has timed out (global failure).
Design space. The design space D allows us to explore different

realizations of a scenario. While the previously defined primitive

design parameters {Θi } are fixed, D is composed of the layout

parameters of each object relative to its parent in the scene graph.

Therefore in the general case D = SE(3)m ; in practice however,

CAUSAL
GRAPH

TIME
LINE

(0)

(0)

(1)

(2)

(2)

(3)

(3)

(4)

(4)

(1)

A B
C

F

D

G

E
H I J

A: FIRST DOMINO RUN TOPPLES
B: PLANK TOPPLES
C: PLANK HITS SECOND DOMINO RUN
D: SECOND DOMINO RUN TOPPLES
E: LEVER PIVOTS

F: PLANK HITS BALL
G: BALL ROLLS ON TRACK
H: BALL FALLS
I: BALL ENTERS GOBLET
J: BALL STOPS

Fig. 6. branching scenario.A first domino run (top left of the view) topples

and hits a plank, which in turns triggers two parallel branches: on one side,

a second domino run topples and falls on a lever, which pivots; on the other,

a ball rolls on a track, passes below the now-raised lever, and falls into a

goblet. As in Figure 3, snapshots are matched with events from the causal

graph. The two arrows pointing towards event H mean that both E and

G need to have happened for H to happen; i.e., the ball can only fall if it

started rolling and the lever was raised.

ACM Trans. Graph., Vol. 38, No. 4, Article 43. Publication date: July 2019.

Designing Chain Reaction Contraptions from Causal Graphs • 43:5

D+ D+?

D� D�D− D−?

x x?

∂D+ ∂D+?

Fig. 7. Design space. Abstract representation of a slice of a design space

D , divided into success (D+), failure (D−) and impossible (D�) regions. On
the left, an idealized view shows each region unambiguously defined, and

a layout x clearly positioned. On the right, uncertainties are taken into

account: the realization of a layout is now only close to x with a certain

probability, while its success or failure also become probabilistic. In other

words, points near the success boundary ∂D+ are likely to fail in real life.

some layout parameters can be frozen (e.g., if an object is always in

a given plane). This results in d free parameters, each in a predefined

range [a,b]. For convenience, we assume that each parameter range

is normalized so that D = [0, 1]d .
This design space is further structured as follows (see Figure 7-

left): first, some regions are forbidden a priori (i.e., before simulation)

because they are not physically feasible: typically when two distinct

rigid bodies intersect each other at t0. They form the impossible
region D�. Second, the physically feasible space is divided between

the success region D+ and the failure region D−, which have no

explicit representation in the general case, but can be approximated

by sampling scenario instances and simulating them under the

supervision of the causal graph. Thus, D = D� ∪ D+ ∪ D−, with
some of these regions potentially disconnected. Note that although

we are ultimately only interested in finding D+, D� and D− are kept
distinct for reasons given in Section 7.

While such virtual regions are (implicitly) defined, many sources

of bias and error can make the behavior of a virtual scenario diverge

from its concrete realization. Coming back to our design space

representation, a more telling picture is given Figure 7-top right:

uncertainty affects not only the boundary ∂D+, but also the layout

of the scene, or in other words, the position x in the design space D.
The former reflects a wide range of factors throughout the pipeline:

it encompasses random measurement errors as well as calibration,

modeling and simulation biases, and rounding errors. The latter can

originate from random placement error by the user. While a lot of

effort can go into reducing these biases and errors (e.g., by choosing

a better simulator, being more careful during assembly, etc.), we

take a different approach to lower the chance of failure.

4 OVERVIEW

4.1 User Experience

Our method workflow is divided in three steps: scenario definition,

probability computation and optimization, and physical realization.

Defining a scenario consists in specifying the scene, causal graph,

and design space.

The user describes the scene by selecting the primitives, setting

their geometric and physical parameters, organizing them as a scene

graph (optional), and providing an initial layout (not necessarily

a successful one). Setting the fixed parameters requires at least a

few real-world measurements (e.g., size and weight). The user then

indicates a causal graph by choosing events relative to one or sev-

eral primitives from a preexisting library, and connecting them by

directed edges. Lastly, the user specifies the design space in terms

of ranges of values for the six transform parameters (position and

orientation) of each primitive. Parameters with no range are locked

to their initial values. We note that specifying a scene hierarchy

in the first step can help avoid the exploration of large irrelevant

portions of the design space; just like accurate models however, a

sophisticated hierarchy is not strictly necessary. From this input, a

simulation-based success probability is built, allowing to optimize

the contraption layout to find a solution robust to errors. The solu-

tion is then exported as a printed outline to guide the user during

assembly (see supplemental).

4.2 Algorithm Overview

The core of our method is the computation of a success probability

distribution conditioned on the layout x, modeled as the class proba-

bility output by a binary success/failure classifier trained on the

simulated scenario instances. In Section 5, we propose algorithms

to efficiently find successful points in the design space, train the

classifier and improve its accuracy via active learning. Section 6 then

demonstrates how this method can scale in high-dimensional design

spaces using a divide-and-conquer method where the global prob-
ability of success is decomposed into conditional probabilities of

success of individual events. Each of these components is restricted

to the design parameters that really influence the corresponding

event, thus reducing the dimensionality of their respective design

subspace. Finally, in Section 7, we take the scenario instance with

the highest success probability and refine it using an SPD-based

global energy that we minimize under physical validity constraints.

5 SUCCESS PROBABILITY COMPUTATION

We consider a scenario S where objects are laid out according to a

vector of parameters x ∈ D, with D = D� ∪D+ ∪D−. Our goal is to
build an approximation of the success probability distribution (SPD)

Pr(D+ |x) using the data provided by the simulator.

Our key observation is that we can avoid explicitly modeling

all the sources of uncertainty listed in Section 3. As long as we

have a synthetic approximation of the outcome function (or ‘ora-

cle’) h : D \ D� → {failure, success}, we can build a probability

distribution based solely on a learned approximation of the success

region D+. Maximizing such a probability allows to ‘push’ a point

x deeper inside D+, thus increasing robustness to bias and assem-

bly errors. Indeed, moving away from the boundary reduces the

dependence between the variance of the input (layout parameters x)
and the variance of the output (success/failure flag), which is

a central principle of the Taguchi methods for robust design [Rao

et al. 2008]. In short, the idea is to make the output less sensitive to
parameter variations, thus avoiding the need to explicitly account

for all possible sources of error.

ACM Trans. Graph., Vol. 38, No. 4, Article 43. Publication date: July 2019.

43:6 • Robin Roussel, Marie-Paule Cani, Jean-Claude Léon, and Niloy J. Mitra

Initial
exploration

Classifier
training

ery
synthesis

Probability
calibration

Section 5.1

Section 5.2

Section 5.3

X

X

f +k
f −k

Dk

f +k+1
f −k+1

Dk+1

Fig. 8. Building the SPD. Top: main steps of our global SPD approximation

method. Bottom: detail of the active learning loop: at iteration k , we use
the current dataset X (left) to train an SVM (middle; classification shown

as background colors). The new support vectors (black dots) are used to

build a new distribution Dk (right; probability density shown in white) that

encourages additional sampling where the classifier is the most uncertain

(i.e., near the boundary).

The SPD is built by calibrating the score of a Support Vector Ma-

chine (SVM) classifier trained on simulated samples. We chose SVMs

not only for their robustness to overfitting in high-dimensional

spaces, but also because they mesh very well with our active learn-

ing strategy, as described next (see Section 8 for a comparison with

baseline methods).

In this section, we consider a single SPD computed on the entire

design space. Our method, as shown in Figure 8-top, starts with an

initial exploration of the design space (Section 5.1) by adaptively

sampling D and running simulations to find a minimal number of

successful instances. The main body of the algorithm (Section 5.2)

then follows an active learning strategy in two alternating steps: first,
during classifier training, a non-linear kernel SVM is trained on the

current dataset to approximate ∂D+; second, during query synthesis,
the decision function of the SVM helps identify uncertain regions of

the design space which are then probed to augment the dataset. As

a final step (Section 5.3), we apply a probability calibration to map

the final SVM score to a class probability for success.
During the entire process, new candidate samples are filtered to

discard the physically impossible ones (e.g., those where rigid bodies

intersect). Physical validity does not need to be learned because it is

enforced by constraints during layout optimization (see Section 7).

Valid scenario instances are simulated under supervision of the

causal graph, yielding a global success or failure label.

5.1 Initial Exploration by Adaptive Sampling

The goal of the exploration stage is to discover an initial number

of successful instances N+ (200 by default). Algorithm 1 details our

adaptive sampling method. We iteratively grow a list of physically

valid sample points X =
⋃
k Xk , where Xk is the list of N s

k points

Algorithm 1 Exploration by adaptive sampling.

1: X ← ∅
2: {n+i } ← ∅
3: D0 ← SobolSeqence()

4: k ← 0

5: enouдh ← false
6: while k ≤ keand not enouдh do
7: Xk ← SamplePhysicallyValid(Dk , N s

k)

8: X ← X ∪ Xk
9: // Simulate each sample to get their # of successful events.

10: {n+i } ← {n
+
i } ∪ {GetNumSuccEvents(x) ∀x ∈ Xk }

11: if | {i : n+i = n } | ≥ N + then
12: enouдh ← true // Because xi ∈ D+ ⇔ n+i = n.
13: else
14: I ← ArgNMax({n+i }, N

+)

15: w← {n+Ii /
∑
j∈I n+j ∀i ∈ [1 . . N +]}

16: Dk+1 ←
∑N +
i=1 wiN(xIi , diag(σ |b − a |))

17: k ← k + 1
18: end if
19: end while

(10 by default) drawn from distribution Dk at step k , until either
(i) the number of successful points |{x ∈ X : x ∈ D+}| reaches N+,
or (ii) after keiterations (500 by default, which was never reached

in our experiments). The initial sampling X0 is drawn from the

quasi-random Sobol sequence [1967] (N s
0
= 500 by default). We

use the causal graph G to orient the sampling towards the most

relevant regions of the design space: for each new sample point

xi ∈ X , we simulate the corresponding scenario instance and record

the number of successful events n+i (between 0 and n, where n is

the total number of events); in other words, n+i is the number of

causal graph nodes whose state is success after simulation of a

single instance xi . Then, we select the top N+ values from {n+i }, and
note I their indices. We use them to build a mixture of Gaussians

Dk ∼

N +∑
i=1

wiN(xIi , diag(σ)), (1)

with a diagonal factor σ = 0.01 by default. There is one Gaussian per

sample xi ; their weight wi reflects the relative success of xi with
wi = n+Ii

/
∑
j ∈I n

+
j . This formulation focuses exploration around

the current best partially successful scenario instances, which ef-

fectively helps it reach regions containing full successes even in

high-dimensional design spaces. As in reinforcement learning, we

can tune the balance between exploration and exploitation: for in-
stance, a higher σ favors exploration, as points are sampled further

from the current best. Moreover, as new successful data points are

found, only taking the top N+ points at each step means that our

method progressively favors exploitation of full successes over ex-

ploration of partial successes. Lastly, we note that exploration can be

made easier by providing a more detailed causal graph, as it yields

a finer-grained distinction between partially successful instances.

5.2 Classifier Training andQuery Synthesis

The goal of this step is to obtain a classifier with sufficient accuracy

(90% in our experiments). We iteratively train an SVM and query

new design space points until we reach either the target accuracy

ACM Trans. Graph., Vol. 38, No. 4, Article 43. Publication date: July 2019.

Designing Chain Reaction Contraptions from Causal Graphs • 43:7

Algorithm 2 Classifier training and query synthesis.

1: y← ComputeLabels(X) // Simulate each sample.

2: k ← 0

3: // Initial classifier training

4: fk , {x̂i }vi=1, U , acc ← TrainEstimator(X , y)
5: while k ≤ k land acc ≥ 0.9 do
6: // Query synthesis

7: w← {|fk (x̂i) | /
∑v
j=1 |fk (x̂j) | ∀i ∈ [1 . .v]}

8: Dk ←
∑v
i=1wiN(x̂i , |fk (x̂i) |U)

9: Xk ← SamplePhysicallyValid(Dk , 10N s)

10: I ← ArgNMin({ |fk (xi) | ∀xi ∈ Xk }, N s)

11: X ′k ← {xi ∈ Xk : i ∈ I }
12: X ← X ∪ X ′k
13: y← y ∪ ComputeLabels(X ′k) // Simulate each new sample.

14: // Classifier training

15: fk , {x̂i }vi=1, U , acc ← TrainEstimator(X , y)
16: k ← k + 1
17: end while

or the maximal number of iterations k l (5 by default), as illustrated

in Figure 8-bottom and detailed in Algorithm 2. The list of samples

is noted again X =
⋃
k Xk , where X0 is the set of sample points

obtained from the initialization step.

Classifier training. Following common machine learning prac-

tices, the dataset is first standardized (i.e., transformed to zero mean

and unit variance). The SVM classifier has two hyperparameters: C ,
the regularization parameter, and γ , the inverse radius of influence
of each support vector. We automatically select their optimal value

from a logarithmic range using stratified 3-fold cross-validation.

The accuracy at step k is given by the cross-validation score.

Query synthesis. In active learning, a learner is able to improve

its accuracy by querying an ‘oracle’ for data points that were not

part of its original training set [Settles 2012]. The query, however,

comes at a computational cost; the algorithm thus needs to choose

its queries wisely in order to improve its performance. In our case,

where the oracle is a simulator, any physically valid point in the

design space can be queried to obtain success/failure label; this
problem is called query synthesis. A common strategy consists in

reducing estimator uncertainty by querying regions of which the

learner is the least certain about. For an SVM, this region is easy to

find: it lies near the classification boundary, where the current SVM

decision function fk : Rd → R is close to 0. This boundary is itself

defined by the v support vectors {x̂i }vi=1. Hence, after training the
SVM at step k , we draw samples from the mixture of Gaussians

Dk ∼

v∑
i=1

wiN(x̂i , | fk (x̂i)|U), (2)

where U is the inverse of the diagonal scaling matrix used for

standardization. The Gaussians are weighted by | fk | with: wi =

| fk (x̂i)|/
∑
j | fk (x̂j)|, thus giving sampling priority to the farthest

support vectors (i.e., where the boundary is most uncertain). The

decision function fk allows to scale the Gaussians to sample the

appropriate neighborhood around each support vector x̂i . However,
since samples are taken in all directions around each x̂i , it is unlikely

(a)

(b) (c)

(a) (b) (c)

X

Z

X

Z

Fig. 9. SPD Visualization. A slice of our learned SPD approximation (top),

with three instances (bottom) sampled from the design space of our sim-

ple scenario from Figure 3. The two dimensions of D shown here are the

normalized X and Z coordinates of the track center (fixed slope). The color

range is discretized for clearer visualization of the isolevels. We observe that

both (a) and (b) belong to an elongated region where the ball hits the top

left corner of the first domino, while in (c) it clearly misses the domino run.

that many of such samples will actually lie near the boundary. There-

fore, we first sample (without simulating) 10N s
points using Dk ,

and only keep the N s
ones having the smallest | fk (x)| value.

5.3 Probability Calibration

While we do not strictly need to compute a probability when there

is only one classifier (as the SVM decision function can be max-

imized directly), the divide-and-conquer method of Section 6 re-

quires probabilities to be output by each classifier so that they can

be meaningfully combined and/or compared. The decision func-

tion f , however, approximates a signed distance to a regularized

boundary and not a probability. Nevertheless, the success probability

distribution Pr(D+ |x) can be approximated by applying a contin-

uous transformation to the decision function, following a method

known as Platt Scaling [Platt 1999] that fits a logistic regression

model to the classifier’s scores. Specifically, a maximum likelihood

optimization is performed to calibrate the coefficients α , β ∈ R in

Pr(D+ |x) = (1 + exp(α f (x) + β))−1. (3)

After this calibration, we can evaluate the SPD of a new scenario

instance x by computing Pr(D+ |x) (see Figure 9).

6 EXTENSION TO COMPLEX CAUSAL CHAINS

Chain reactions of reasonable visual complexity can easily depend

on several dozens of layout parameters. To help the SPD compu-

tation scale to such a high number of dimensions, we propose a

ACM Trans. Graph., Vol. 38, No. 4, Article 43. Publication date: July 2019.

43:8 • Robin Roussel, Marie-Paule Cani, Jean-Claude Léon, and Niloy J. Mitra

divide-and-conquer method where the global SPD for a scenario

S = {S,G,D} is broken down into a set of success probabilities of

simpler sub-scenarios Si = {S,Gi ,Di }, whereGi is a subgraph ofG ,
and Di is a subspace of D with dimension di < d . This inequality is

key to the scalability of our method, as it reduces the combinatorial

complexity of exploring D and approximating the SPD.

Before detailing our extended pipeline, let us demonstrate how

to factorize Pr(D+ |x). By definition, a scenario is successful if and

only if each event happens in the correct order; this is equivalent to

each node of the causal graph reaching success after its parent(s)
did the same. Formally, if we associate to each causal graph event

ei the random variable Ei giving the final state of this event after

simulation, we are trying to decompose the joint probability

Pr(D+ |x) = Pr

(
{Ei }

n
i=1 = success | x

)
, (4)

where n is the number of events, and ‘{·} = success’ means that all

elements of the set are equal to success. To do so, let us consider the
directed graphical model G obtained by substituting each node ei in
G by the corresponding Ei . By construction of the causal graph, the

success of the parents is equivalent to the success of all ancestors;
therefore the success of any Ei , given x, only depends on its parents’
success. In other words, G satisfies the local Markov property,

expressed as conditional independence:

∀Ei ∈ V (G) : Ei ⊥⊥ {nd(Ei) \ pa(Ei)} | pa(Ei), x,

where V (G) is the set of vertices in G, and nd(Ei) and pa(Ei) are
respectively the set of non-descendants and parents of Ei in G. It can
be shown that for directed acyclic graphs, this property is notably

equivalent to the factorization of joint probabilities on the graph

nodes into conditional probabilities given the node’s parents [Lau-

ritzen 2001]. In particular, Eq. 4 yields the SPD factorization:

Pr(D+ |x) =
n∏
i=1

Pr (Ei = success | pa(Ei) = success, x) . (5)

We call the i-th factor of the above product the Ei -CSPD (where ‘C’

stands for ‘Conditional’). Of course, if we were to approximate each

Ei -CSPD as we approximate the global SPD, the complexity would

be multiplied by n, rather than decreased. To effectively reduce it,

we make the key observation that given pa(Ei) = success, having
Ei = success depends on few design parameters; in other words,

the variance of each Ei -CSPD mostly only occurs in a relatively low-

dimensional subspace Di ⊂ D. Computing this subspace mapping
(see second block in Figure 10) is described next.

First, as a pre-processing step, we identify which Ei are quasi-
deterministic, i.e., nearly always successful when their parents are

successful. Given X the sampling obtained after initial exploration

(Section 5.1), which contains a minimum number of globally suc-

cessful samples, we compute the success rate of each Ei ,

ρi = N+i /(N
+
i + N

−
i),

where N+i and N−i are respectively Ei ’s number of successes and

failures in X , and assign Di = ∅ to each Ei having ρi ≥ 0.95. The

corresponding Ei -CSPDs are subsequently set to 1. We measure

correlations between the remaining Ei and the design parameters

using mutual information [Cover and Thomas 2006], allowing us to

discover linear as well as nonlinear relationships. In our experiments,

Initial
exploration

Subspace
mapping

Classifier
training

ery
synthesis

Probability
calibration

Fig. 10. Extended SPD building pipeline.We propose an extended ver-

sion of our SPD building to scale with a high-dimensional design space.

parameters were selected if their mutual information with Ei was
greater than 0.2.

To approximate the non-constant factors, we apply the following

method, illustrated as the stack of blocks of the extended pipeline

in Figure 10. For each Ei -CSPD, we consider the subgraph Gi con-

taining only ei and its ancestors. We run the training and boundary

consolidation loop (Section 5.2) using Gi , with two slight modifi-

cations: (i) to satisfy the conditional probability in Eq. 5, we only

keep the samples satisfying pa(Ei) = success. We know that such

samples exist in the initial set for each Ei , since some of the initial

samples are globally successful over G. (ii) During boundary con-

solidation, we restrict sampling to the corresponding Di by simply

taking the indices of the parameters not inDi , and setting their scale

factor inU to 0: therefore, only the parameters in Di have non-zero

variance. Lastly, we calibrate each probability as in Section 5.3.

As a result of the above steps, the SPD approximation can be

computed with a significant complexity reduction as

Pr(D+ |x) ≈
n∏
i=1

ri (x), (6)

where ri (x) = Pr (Ei = success | pa(Ei) = success,ϕi (x)) and ϕi :
D → Di is the subspace mapping.

7 LAYOUT OPTIMIZATION

Once the SPD has been computed, we take the sample point with

the highest success probability as our most robust current solution.

Although this design is indeed already quite robust, we further refine

it by applying a nonlinear optimization. While the factorization

could allow us, in theory, to optimize each Ei -CSPD separately, in

general they are not separable because their subspaces Di overlap.

Instead, we aggregate all components into a global energy to find

min

x∈D
Er(x)

subject to C�(x) ≥ 0 (7)

with

Er(x) = −Sα ◦ r(x), (8)

where ri (x) is the Ei -CSPD approximation from Eq. 6, and the func-

tion Sα : Rn → R is the smooth minimum [Lange et al. 2014]:

Sα (z) =
∑
i zie

−αzi /
∑
i e
−αzi

with α ∈ R+ controlling the impor-

tance of the smallest component of z. The reason for this choice

(rather than taking the product, as in Eq. 6) comes from the obser-

vation that a chain is only as strong as its weakest link. This entails

ACM Trans. Graph., Vol. 38, No. 4, Article 43. Publication date: July 2019.

Designing Chain Reaction Contraptions from Causal Graphs • 43:9

that priority should be given to maximizing the minimal Ei -CSPD
value, rather than maximizing their product.

The constraint vector C� ensures that the design stays physically

valid. It aggregates (i) penetrations between distinct rigid bodies

in the scene, and (ii) primitive-specific constraints, such as ensur-

ing that the layout of a rope-pulley is compatible with the rope

length. The former is easily obtained from the rigid body simulator,

as penetrations are needed to compute the reaction force between

colliding shapes [Coumans 2018]. While we could have learned in-

valid configurations when computing the SPD, thus integrating the

constraint into the energy, we chose to explicitly enforce physical

validity during optimization for two reasons: first, validity would

not have been guaranteed since we only approximate the SPD, and

second, impossibility and failure are two distinct concepts. Indeed,

the probability of success does not necessarily decrease as a design

x ∈ D+ is moved closer to D�: for example, putting two successive

dominoes in contact might robustly ensure that both topple.

As described earlier, the initial solution is the sample point with

the highest SPD value. Assuming that this guess is close enough

to the global minimum, we use Sequential Least-Squares Quadratic

Programming [Kraft 1988] to find the optimal design.

8 RESULTS AND EVALUATION

8.1 Implementation

Our framework was implemented in Python 3. 3D models are gen-

erated by OpenSCAD and simulated using Bullet Physics. Most com-

putations, including optimization, are done with Numpy and Scipy
while Scikit-learn is used for the SVM classifier and the other ma-

chine learning tools. Our graphical interface (described next) was

implemented with the Panda3D game engine. Code and additional

details are included as supplementary material.

Interface. Our graphical interface allows users to define the scene

and causal graph. They can instantiate the primitives described in

Section 3 and define the initial layout. We provide specific tools to

help designing the most complex primitives: for instance, domino

runs can be generated by simply drawing a path and having domi-

noes automatically distributed along it. Simulation can be run in

real time, providing visual feedback during design. Once the scene

is complete, users define the causal graph by instantiating events,

linking them to the objects in the scene and drawing directed edges

between them, and finally specifying necessary parameters such as

design space ranges. We note that the specific layout designed in

the GUI does not need to be a fully successful one: all that matters

is that there is a successful region somewhere in the design space.

Export. The final optimized layout is automatically exported as PDF

sheets to be printed, in order to provide guidance during assembly.

The outline is obtained by projecting the convex hull of each object

onto a vertical or horizontal plane, depending on the user’s need.

A pattern of grey lines is added to the background to help join the

paper sheets after printing. Guidance patterns for the examples

presented in this paper are provided as supplementary material.

8.2 Qualitative Evaluation

We designed, implemented, and physically realized a number of

scenarios to validate our pipeline. We present here a selection of

A : BALL ROLLS ON TOP TRACK
B : BALL HITS LEFT PLANK
C : BALL ROLLS ON BOTTOM TRACK
D : LEFT PLANK TOPPLES

E : LEVER PIVOTS
F : RIGHT PLANK FALLS
G : BALL ENTERS GOBLET
H : BALL STOPS

B
C

D E F
G HA

Fig. 11. ballRun scenario. A ball rolls on a sequence of tracks and falls

into a goblet. To open the entrance, it needs to hit the left plank, to make it

fall, triggering the fall of the right plank via the bottom lever. Timing control

is needed to ensure that the right plank falls before the ball reaches the

goblet. Top: initial state; bottom: final state. See supplemental video.

four examples, focusing on those most challenging due to com-

plex movements and/or event synchronizations. Note that simple

domino runs following long low-curvature paths are easy to design

(as commonly seen in online videos) and hence were avoided in

these experiments. The four presented sequences are called ball-

Run, causalitySwitch, longChain, and teapotAdventure, in

increasing order of complexity. The first two resulted in a success-

ful real-life run after a single try; the others, due to their higher

complexity, required a more careful adjustment of the parts to the

printed layout and succeeded after 4-5 trials. We note that this

number is much lower that the dozens of trials usually shown in

behind-the-scenes videos found online. In this section, we describe

each scenario at a high level, while further details and video clips

are provided in the supplemental material.

In ballRun, the goal is to get the ball to roll down the tracks and

fall into the cup. However, a wooden plank blocks the entrance of

the cup. Synchronization is needed along the causal graph to realize

the following sequence: the ball hits the first wooden block to get

the lower support rotating, but the ball has to travel slowly enough

to allow the other wooden block to fall, thus opening the pathway

to the target cup (see Figure 11 but best seen in the video).

The causalitySwitch contains two longer chains running in

parallel until a ‘domino switch’ allows only the fastest path to go

through by blocking the way of the other. One path is a wave-like

ACM Trans. Graph., Vol. 38, No. 4, Article 43. Publication date: July 2019.

43:10 • Robin Roussel, Marie-Paule Cani, Jean-Claude Léon, and Niloy J. Mitra

A : BRANCHING DOM. RUN TOPPLES

J : RIGHT END OF SWITCH TOPPLES + LEFT END OF SWITCH DOES NOT MOVE

B : LEFT BRANCH DOM. HITS BALL
C : BALL ROLLS ON TRACK
D : BALL HITS STRAIGHT DOM. RUN
E : STRAIGHT DOM. RUN TOPPLES

F : RIGHT BRANCH DOM. HITS PLANK
G : PLANK TOPPLES
H : PLANK HITS WAVE DOM. RUN
I : WAVE DOM. RUN TOPPLES

B C D E

F G H I
A J

Fig. 12. causalitySwitch scenario. A branching domino run topples and triggers two parallel branches. On one side (‘left’), a ball rolls down a track and

topples a short straight domino run. On the ‘right’ side, a plank falls and topples a long, curved domino run. Whichever side is faster (in this figure: the left

one) triggers the ‘domino switch’, closing the path of the other side.

A : BOX LEVER PIVOTS
B : TOP-RIGHT LEVER PIVOTS
C : BALL ROLLS ON TRACK
D : BALL HITS BOUNCER
E : BALL HITS TOP-LEFT LEVER

F : PLANK TOPPLES
G : PLANK ENTERS BOTTOM GOBLET
H : BOTTOM WEIGHT FALLS
I : COINS ENTER BOX

B C D E

FGHI

A

Fig. 13. longChain scenario. A long chain of events that is triggered by the box weight pivoting an initial lever. Dominoes topple and send a ball onto a

track to go hit a lever, which makes a plank topple through a narrow entrance into a goblet. This triggers the fall of the bottom weight, and in turn, the central

goblet pivots to let coins fall into the box. Please refer to the supplementary video.

chain of dominoes, while the other involves a ball rolling on a track.

This experiment demonstrates that we can choose to optimize for

either side to be the fastest by modifying the causal graph accord-

ingly. Figure 12 shows the causal graph along with the final and

initial state with the ‘ball’ side successfully reaching the switch first.

Both versions endings are shown in the supplementary video.

The longChain is a long linear sequence of events. Under the

weight of the box’s contents, a lever pivots to topple the domino

run that, in turn, nudges the ball onto the track. The ball bounces

on a small platform and hits a lever, resulting in the orange plank

toppling. The plank tumbles and falls through a narrow entrance

into a goblet, moving a pivot that makes the bottom weight fall,

tugging on the central goblet from which coins fall into the box.

Figure 13 shows the causal graph along with initial and final states

of the optimized layout, while the full run is shown in the video.

The teapotAdventure is the most complex example shown in

this paper (see Figures 1 and 14). As seen from the causal graph,

success for this contraption requires a very challenging synchro-

nization between delicate event chains. In short, there are two balls

involved (one initially free, and one in a cage), that need to escape

ACM Trans. Graph., Vol. 38, No. 4, Article 43. Publication date: July 2019.

Designing Chain Reaction Contraptions from Causal Graphs • 43:11

B

G

C

H I

F

A M

E

L
J K

D
A : BALL 1 ROLLS ON START TRACK
B : BALL 1 HITS GATE LEVER
C : BALL 1 ROLLS ON RIGHT-TOP TRACK
D : BALL 1 ROLLS ON RIGHT LEVER TRACK
E : RIGHT LEVER TRACK PIVOTS
F : BALL 1 FALLS INSIDE TEAPOT

G : GATE FALLS
H : LEFT LEVER TRACK PIVOTS

J : BALL 2 ROLLS ON BRIDGE
I : BALL 2 ROLLS ON LEFT-BOTTOM TRACK

K : BALL 2 FALLS INSIDE TEAPOT
L : BRIDGE PIVOTS

M : BALL 1 MEETS BALL 2 (AND THEY LIVED HAPPILY EVER AFTER)

Fig. 14. teapotAdventure scenario. See Figure 1 for initial layout. This figure shows rendered versus assembled layouts for start and end frames of the

optimized layout. Ball 1 triggers the fall of the middle gate, releasing ball 2. Ball 2 hits the gate and takes the left route, falling on a lever so that ball 1 can roll

underneath. Ball 2 then makes the central weight fall, liberating the bottom bridge. Both balls then meet in the teapot. Please see the supplementary video.

the contraption and reach the teapot by opening each other’s path

along the way. Note that such a sequence is very difficult to man-

ually author without computational guidance as proposed in this

paper. On a lighter note, this kind of contraption illustrates the

narrative power of Rube Goldberg machines, such as can be seen,

e.g., in the Japanese show PythagoraSwitch.

8.3 Quantitative Evaluation

Local and global robustness.We compare the output of different

methods with the following measures of robustness. Let S be a

scenario with design spaceD, andX ⊂ D a set of points decomposed

asX = X+∪X−∪X� (respectively successes, failures and impossible

instances). The local robustness ρl : D × [0, 1] → [0, 1] is defined as

ρl (x, ϵ) =

{
|Bϵ (x)∩X + |

|Bϵ (x)∩{X +∪X − } |
if x ∈ D \ D�,

0 otherwise,

where Bϵ (x) is the ball of radius ϵ centered at x ∈ D. In this for-

mulation, ϵ represents a uniform error on the layout parameters,

while ρl is the success rate in the neighborhood Bϵ (x). The global
robustness ρд : D → [0, 1] is then defined as

ρд(x) =
∫

1

0

ρl (x, ϵ)dϵ .

In practice, the evaluation dataset X is computed from a relatively

dense sampling of the design space (with 100K points for causali-

tySwitch, and 1M points for the three others). Additional details

on the computation of ρl are provided in the supplemental.

Comparison with baseline methods. We define three baseline

methods to compare against our technique:

(B1) Uniformly sample and simulate points in D until a successful

configuration is found.

(B2) Uniformly sample and simulate points inD, compute the local

robustness x 7→ ρl (x, 0.1) for each, and take the best one.

(B3) Run a Bayesian Optimization with a Gaussian Process prior

[Shahriari et al. 2016] (initialized with uniform sampling)

using x 7→ ρl (x, 0.1) as an objective function.

Error ϵ on the output layout parameters x∗

A
v
e
r
a
g
e
l
o
c
a
l
r
o
b
u
s
t
n
e
s
s
ρ
l(
x∗
,ϵ
)

d = 4

d = 8

d = 11

d = 16

Fig. 15. Local robustness plots. Average local robustness ρl (x∗, ϵ) as a
function of the error ϵ on the layout parameters x∗ output by each method,

for problems of different dimension d . Each curve is surrounded by a stan-

dard error of the mean interval (withT = 10 runs per method). Scenarios are

respectively causalitySwitch, ballRun, longChain and teapotAdventure.

ACM Trans. Graph., Vol. 38, No. 4, Article 43. Publication date: July 2019.

43:12 • Robin Roussel, Marie-Paule Cani, Jean-Claude Léon, and Niloy J. Mitra

Table 1. Experiments statistics. Both global robustness and processing time are averages of T = 10 random trials. The simulation step was 0.002s.

Scenario

Number of

param. d
Max. simu.

time (s)

Simu.

budget B
Global robustness ρд(x∗) Processing time (s)

B1 B2 B3 Ours B1 B2 B3 Ours

causalitySwitch 4 4 614 0.44 0.59 0.63 0.65 263 282 463 364

ballRun 8 4 1120 0.34 0.35 0.40 0.48 59 52 786 153

longChain 11 5 1915 0.09 0.13 0.13 0.16 1499 1597 1956 636
teapotAdventure 16 8 2420 0.16 0.23 0.14 0.27 536 536 988 779

Each baseline is given the same ‘simulation budget’ B computed

from our own method: we first run our method T times with a

different random generator seed each time (with T = 10 in our

experiments), and compute B as the average number of simulations

carried out. Each baseline is then also runT times until B is reached

(or until a success is found for baseline B1). The final local robustness

curve is the average curve of the different trials.

Results in Figure 15 and Table 1 show that our method outper-

forms the baselines for all four scenarios presented in Section 8.2.

Interestingly, the Gaussian Process optimization (B3) appears to

perform worse than the simpler uniform sampling (B2) in higher

dimensions, which could be due to the presence of holes (i.e., com-

ponents of D�) in the optimization landscape. Additionally, we

demonstrate the positive impact of SPD factorization in Figure 16.

8.4 Limitations and Future Work

Our method is a first step towards the robustification of machines in-

volving complex sequences of events. It presents several limitations

that open exciting avenues for future improvements.

First, while our method does increase robustness to modeling

biases, some neglected physical effects can still significantly influ-

ence the final execution, such as vibrations created by collisions,

or tracks sagging under the weight of balls. Using a more realistic

physical simulator would allow to take these secondary effects into

account, as well as support more advanced primitives and events

(e.g., involving cloths, fluids or fire), at the price of an increase in

Error ϵ on the output layout parameters x∗

A
v
e
r
a
g
e
l
o
c
a
l
r
o
b
u
s
t
n
e
s
s
ρ
l(
x∗
,ϵ
)

d = 11

d = 16

Fig. 16. Full versus factorized SPD. We use the same metric as in Fig-

ure 15 to compare two versions of our method for the longChain and

teapotAdventure scenarios. ‘Full’ means that a single SVM was used over

the entire design space, while ‘Factorized’ follows the method in Section 6.

simulation time. Second, it is assumed that the design space con-

tains a continuous region of solutions, implying that the expected

sequence of events is indeed possible. While it is unclear how this

could be checked at design time, some heuristics could be developed

to give feedback to the user and avoid the most obvious mistakes.

Third, a better understanding of dysfunctional cases could help

use simulations more efficiently, by stopping runs early if failure

is expected. In the same vein, when building CSPD factors, further

analysis could allow restarting simulations mid-run, i.e., from an ini-

tial state specific to each event, rather than starting all simulations

from the same point. Lastly, the SPD computation could be improved

in several ways. A clear next step is to try alternative classification

models, such as neural networks, although SVMs present distinct

advantages, such as the speed of training, the inherent ability to

avoid overfitting, and the ease of sampling new points near the

boundary for active learning. Performance could be improved by

(i) using models supporting online training (i.e., allowing to train

on new samples without retraining over the entire dataset), and

(ii) using a more advanced stopping criterion for active learning.

Besides these technical points, our work may appear very specific

both in scope and audience. On one hand, Rube Goldberg machines

are indeed a niche application; however, ourwork could be applied to

more useful real-world mechanisms involving sequences of events,

such as locks, pop-up tents and ejection seats, to name a few. Indeed,

while we chose to limit our design space to layout parameters (as

components were assumed to be preexisting), nothing prevents the

inclusion of other geometric and physical parameters (although

additional physical validity checks may have to be performed). The

part requiring an extension would be the causal graph itself: indeed,

it would need to support additional features such as disjunctions

(i.e., ‘if/else’ paths), ‘or’ preconditions (i.e., checking for an event

condition if any of its parent events happened) and duration-based

events (i.e., with a condition expected to be true for a given amount

of time). However, this does not fundamentally change the method

in Section 5; as for the factorization in Section 6, it only requires

the graph to be directed and acyclic. On the other hand, regarding

the audience, while it is true that the expected input (scene, causal

graph and parameter ranges) is demanding for novice users, we

envision our work as part of a larger workflow where such data

could be automatically generated from a more intuitive user input;

this problem is left as an exciting avenue for future research.

9 CONCLUSION

We presented a computational approach to help design chain reac-

tion contraptions by optimizing the components’ layout for a target

ACM Trans. Graph., Vol. 38, No. 4, Article 43. Publication date: July 2019.

Designing Chain Reaction Contraptions from Causal Graphs • 43:13

sequence of events specified as a causal graph. We specifically fo-

cused on robustifying the design against modeling bias and manual

assembly errors. At the core of the method is the computation of a

success probability distribution (SPD) that provides an approximate

measure of robustness to uncertainties. We combined simulation-

based search and machine learning techniques to build the SPD,

before using it to obtain a robust design layout. We showed signif-

icant improvement over baseline methods across a wide range of

dimensions, and validated our method by physically realizing a set

of complex Rube Goldberg machines optimized with our technique.

ACKNOWLEDGEMENTS

We are grateful to the reviewers for their helpful feedback. We thank

Dan Koschier for proofreading the paper, Tobias Ritschel and Si-

mon Julier for their valuable comments and Mohamed Sayed for the

video voiceover. This work was funded by an ERC Starting Grant

(SmartGeometry StG-2013-335373), an ERC PoC Grant (Semantic-

City), a Google Faculty Award, a Royal Society Advanced Newton

Fellowship and gifts from Adobe.

REFERENCES

Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015. LinkEdit: Interactive

Linkage Editing Using Symbolic Kinematics. ACM Trans. Graph. 34, 4, Article 99
(July 2015), 8 pages. https://doi.org/10.1145/2766985

Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014. Spin-it:

Optimizing Moment of Inertia for Spinnable Objects. ACM Trans. Graph. 33, 4 (2014),
1–96. https://doi.org/10.1145/2601097.2601157

Amit H. Bermano, Thomas Funkhouser, and Szymon Rusinkiewicz. 2017. State of

the Art in Methods and Representations for Fabrication-Aware Design. Computer
Graphics Forum 36, 2 (May 2017), 509–535. https://doi.org/10.1111/cgf.13146

K. Brewer, L. Carraway, and D. Ingram. 2010. Forward Selection as a Candidate for
Constructing Nonregular Robust Parameter Designs. Technical Report. Arkansas

State University.

Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark Pauly. 2013.

Designing and Fabricating Mechanical Automata from Mocap Sequences. ACM
SIGGRAPH Asia 32, 6 (2013), 11.

Desai Chen, David I. W. Levin, Wojciech Matusik, and Danny M. Kaufman. 2017.

Dynamics-aware Numerical Coarsening for Fabrication Design. ACM Trans. Graph.
36, 4, Article 84 (July 2017), 15 pages. https://doi.org/10.1145/3072959.3073669

Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira For-

berg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computa-

tional Design of Mechanical Characters. ACM Trans. Graph. 32, 4 (2013), 1–83.

https://doi.org/10.1145/2461912.2461953

Erwan Coumans. 2018. Bullet Physics SDK. https://github.com/bulletphysics/bullet3.

Accessed: 2018-01-01.

Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). Wiley-Interscience, New York,

NY, USA.

Peter Fischli and David Weiss. 1987. The Way Things Go. Retrieved from https:

//www.youtube.com/watch?v=GXrRC3pfLnE. Accessed: 2018-01-01.

Yohsuke Furuta, Jun Mitani, Takeo Igarashi, and Yukio Fukui. 2010. Kinetic Art Design

System Comprising Rigid Body Simulation. Computer-Aided Design and Applications
7, 4 (2010), 533–546. https://doi.org/10.3722/cadaps.2010.533-546

Akash Garg, Alec Jacobson, and Eitan Grinspun. 2016. Computational design of recon-

figurables. ACM Trans. Graph. 35, 4 (2016), 1–14. https://doi.org/10.1145/2897824.

2925900

Honda. 2003. Cog. Retrieved from https://www.youtube.com/watch?v=Z57kGB-mI54.

Accessed: 2018-01-01.

Devendra Kalra and Alan H Barr. 1992. Modeling with Time and Events in Computer

Animation. Computer Graphics Forum 11, 3 (may 1992), 45–58. https://doi.org/10.

1111/1467-8659.1130045

Yilip Kim and Namje Park. 2012. Development and Application of STEAM Teaching

Model Based on the Rube Goldberg’s Invention. In Computer Science and its Appli-
cations, Sang-Soo Yeo, Yi Pan, Yang Sun Lee, and Hang Bae Chang (Eds.). Springer

Netherlands, Dordrecht, 693–698.

Dieter Kraft. 1988. A Software Package for Sequential Quadratic Programming. Technical
Report. Institut fuer Dynamik der Flugsysteme, Oberpfaffenhofen.

Mandy Lange, Dietlind Zühlke, Olaf Holz, and Thomas Villmann. 2014. Applications of

lp-Norms and their Smooth Approximations for Gradient Based Learning Vector

Quantization. In ESANN. Bruges, 271–276.
Steffen L Lauritzen. 2001. Causal inference from graphical models. Complex stochastic

systems (2001), 63–107.
Honghua Li, Ruizhen Hu, Ibraheem Alhashim, and Hao Zhang. 2015. Foldabilizing

Furniture. ACM Trans. Graph. 34, 4, Article 90 (July 2015), 12 pages. https://doi.

org/10.1145/2766912

M. Lin, T. Shao, Y. Zheng, N. J. Mitra, and K. Zhou. 2018. Recovering Functional

Mechanical Assemblies from Raw Scans. IEEE Transactions on Visualization and
Computer Graphics 24, 3 (March 2018), 1354–1367. https://doi.org/10.1109/TVCG.

2017.2662238

Li-Ke Ma, Yizhonc Zhang, Yang Liu, Kun Zhou, and Xin Tong. 2017. Computational

Design and Fabrication of Soft Pneumatic Objects with Desired Deformations. ACM
Trans. Graph. 36, 6, Article 239 (Nov. 2017), 12 pages. https://doi.org/10.1145/

3130800.3130850

Niloy J. Mitra, Yong-Liang Yang, Dong-Ming Yan, Wilmot Li, and Maneesh Agrawala.

2010. Illustrating How Mechanical Assemblies Work. ACM Trans. Graph. 29, 4
(2010), 58:1–11. https://doi.org/10.1145/1833351.1778795

John C. Platt. 1999. Probabilistic Outputs for Support Vector Machines and Comparisons

to Regularized Likelihood Methods. In Advances in Large Margin Classifiers. MIT

Press, 61–74.

Steve Price. 2017. Top 10 Chain Reaction Tips | Rube Goldberg HowTo. Retrieved from

https://www.youtube.com/watch?v=p8Wwq_B5S7I. Accessed: 2018-01-01.

Ravella Sreenivas Rao, C. Ganesh Kumar, R. Shetty Prakasham, and Phil J. Hobbs. 2008.

The Taguchi methodology as a statistical tool for biotechnological applications: A

critical appraisal. Biotechnology Journal 3, 4 (4 2008), 510–523. https://doi.org/10.

1002/biot.200700201

M. O. Riedl and R. M. Young. 2006. From linear story generation to branching story

graphs. IEEE Computer Graphics and Applications 26, 3 (May 2006), 23–31. https:

//doi.org/10.1109/MCG.2006.56

Adriana Schulz, HarrisonWang, Eitan Crinspun, Justin Solomon, andWojciech Matusik.

2018. Interactive Exploration of Design Trade-offs. ACM Trans. Graph. 37, 4, Article
131 (July 2018), 14 pages. https://doi.org/10.1145/3197517.3201385

Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and Wojciech Matusik.

2017. Interactive Design Space Exploration and Optimization for CAD Models.

ACM Trans. Graph. 36, 4, Article 157 (July 2017), 14 pages. https://doi.org/10.1145/

3072959.3073688

Daniel L. Schwartz and Mary Hegarty. 1996. Coordinating multiple representations for

reasoning about mechanical devices. In Proceedings of the AAAI Spring Symposium
on Cognitive and Computational Models of Spatial Representation. AAAI Press, Menlo

Park, CA, 9.

Burr Settles. 2012. Active learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning 6, 1 (2012), 1–114.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. 2016. Taking the

Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 104, 1 (Jan

2016), 148–175. https://doi.org/10.1109/JPROC.2015.2494218

Maria Shugrina, Ariel Shamir, and Wojciech Matusik. 2015. Fab Forms: Customizable

Objects for Fabrication with Validity and Geometry Caching. ACM Trans. Graph.
34, 4, Article 100 (July 2015), 12 pages. https://doi.org/10.1145/2766994

I.M Sobol’. 1967. On the distribution of points in a cube and the approximate evaluation

of integrals. U. S. S. R. Comput. Math. and Math. Phys. 7, 4 (1967), 86–112. https:

//doi.org/10.1016/0041-5553(67)90144-9

Peng Song, Xiaofei Wang, Xiao Tang, Chi-Wing Fu, Hongfei Xu, Ligang Liu, and Niloy J.

Mitra. 2017. Computational Design of Wind-up Toys. ACM Trans. Graph. 36, 6,
Article 238 (Nov. 2017), 13 pages. https://doi.org/10.1145/3130800.3130808

Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grin-

spun, and Markus Gross. 2014. Computational Design of Linkage-based Characters.

ACM Trans. Graph. 33, 4, Article 64 (July 2014), 9 pages. https://doi.org/10.1145/

2601097.2601143

Nobuyuki Umetani and Bernd Bickel. 2018. Learning Three-dimensional Flow for

Interactive Aerodynamic Design. ACM Trans. Graph. 37, 4, Article 89 (July 2018),

10 pages. https://doi.org/10.1145/3197517.3201325

Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014. Pteromys:

Interactive Design and Optimization of Free-formed Free-flight Model Airplanes.

ACM Trans. Graph. 33, 4 (2014), 1–10. https://doi.org/10.1145/2601097.2601129

Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and Baining Guo. 2012.

Motion-guided Mechanical Toy Modeling. ACM Trans. Graph. 31, 6, Article 127
(Nov. 2012), 10 pages. https://doi.org/10.1145/2366145.2366146

ACM Trans. Graph., Vol. 38, No. 4, Article 43. Publication date: July 2019.

https://doi.org/10.1145/2766985
https://doi.org/10.1145/2601097.2601157
https://doi.org/10.1111/cgf.13146
https://doi.org/10.1145/3072959.3073669
https://doi.org/10.1145/2461912.2461953
https://github.com/bulletphysics/bullet3
https://www.youtube.com/watch?v=GXrRC3pfLnE
https://www.youtube.com/watch?v=GXrRC3pfLnE
https://doi.org/10.3722/cadaps.2010.533-546
https://doi.org/10.1145/2897824.2925900
https://doi.org/10.1145/2897824.2925900
https://www.youtube.com/watch?v=Z57kGB-mI54
https://doi.org/10.1111/1467-8659.1130045
https://doi.org/10.1111/1467-8659.1130045
https://doi.org/10.1145/2766912
https://doi.org/10.1145/2766912
https://doi.org/10.1109/TVCG.2017.2662238
https://doi.org/10.1109/TVCG.2017.2662238
https://doi.org/10.1145/3130800.3130850
https://doi.org/10.1145/3130800.3130850
https://doi.org/10.1145/1833351.1778795
https://www.youtube.com/watch?v=p8Wwq_B5S7I
https://doi.org/10.1002/biot.200700201
https://doi.org/10.1002/biot.200700201
https://doi.org/10.1109/MCG.2006.56
https://doi.org/10.1109/MCG.2006.56
https://doi.org/10.1145/3197517.3201385
https://doi.org/10.1145/3072959.3073688
https://doi.org/10.1145/3072959.3073688
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1145/2766994
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1145/3130800.3130808
https://doi.org/10.1145/2601097.2601143
https://doi.org/10.1145/2601097.2601143
https://doi.org/10.1145/3197517.3201325
https://doi.org/10.1145/2601097.2601129
https://doi.org/10.1145/2366145.2366146

	Abstract
	1 Introduction
	2 Related Work
	3 Concepts and Definitions
	4 Overview
	4.1 User Experience
	4.2 Algorithm Overview

	5 Success probability computation
	5.1 Initial Exploration by Adaptive Sampling
	5.2 Classifier Training and Query Synthesis
	5.3 Probability Calibration

	6 Extension to complex causal chains
	7 Layout optimization
	8 Results and Evaluation
	8.1 Implementation
	8.2 Qualitative Evaluation
	8.3 Quantitative Evaluation
	8.4 Limitations and Future Work

	9 Conclusion
	References

