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Fig. 1. Interaction-guided scene mapping.We present iMapper that discovers potential human-object interactions in an input monocular video and utilizes
them to infer the object layout of the recorded scene containing medium to heavy occlusion. We show the final generated 3D scene as well as recovered
interactions (Scene13). Note that although only the 2D human joint detection (left) is available to our algorithm, here we additionally show reference video
frames (corresponding to A, B, C) to help judge the original scene layout. Please refer to supplementary video.

Next generation smart and augmented reality systems demand a computa-
tional understanding of monocular footage that captures humans in physical
spaces to reveal plausible object arrangements and human-object interac-
tions. Despite recent advances, both in scene layout and human motion
analysis, the above setting remains challenging to analyze due to regular
occlusions that occur between objects and human motions. We observe
that the interaction between object arrangements and human actions is
often strongly correlated, and hence can be used to help recover from these
occlusions. We present iMapper, a data-driven method to identify such
human-object interactions and utilize them to infer layouts of occluded
objects. Starting from a monocular video with detected 2D human joint
positions that are potentially noisy and occluded, we first introduce the
notion of interaction-saliency as space-time snapshots where informative
human-object interactions happen. Then, we propose a global optimization
to retrieve and fit interactions from a database to the detected salient in-
teractions in order to best explain the input video. We extensively evaluate
the approach, both quantitatively against manually annotated ground truth
and through a user study, and demonstrate that iMapper produces plausible
scene layouts for scenes with medium to heavy occlusion. Code and data
are available on the project page.
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1 INTRODUCTION
Computational understanding of monocular videos that capture
human-object interactions in physical spaces is critical for many
emerging fields such as virtual and augmented reality, smart home
systems, assisted living, and robotics. Such applications require
access to object arrangements embedded in the physical spaces
along with the common human-object interactions performed in
such spaces. For example, our future personal robot assistants should
know our working habits along with the supporting object ar-
rangements in our living rooms or workspaces. Hence, a joint
understanding of scenes and human actions from the input feed is
necessary.

While both scene understanding and human performance analysis
are highly popular research areas, traditionally, researchers have
tackled them as two separate problems. On the one hand, scene esti-
mation methods such as Kinect Fusion [Newcombe et al. 2011] and
Bundle Fusion [Dai et al. 2017b] can produce high-quality static in-
door reconstructions, while the likes of DynamicFusion [Newcombe
et al. 2015] can capture non-rigidly deforming scenes by fusing depth
information across space and time. These methods, however, require
the sensor to be manually moved to see around occlusions making
the capture process cumbersome. On the other hand, human per-

formance capture methods either use multiple sensors [von Marcard

ACM Trans. Graph., Vol. 38, No. 4, Article 92. Publication date: July 2019.

https://doi.org/10.1145/3306346.3322961
https://doi.org/10.1145/3306346.3322961
https://doi.org/10.1145/3306346.3322961


92:2 • Monszpart, Guerrero, Ceylan, Yumer and Mitra

et al. 2017] or monocular video [Mehta et al. 2017b; Rogez et al. 2019]
but assume performances to be free from object-induced occlusions.
However, in monocular footage that capture human actions in
physical spaces, objects and human motions regularly occlude each
other during interactions. Filling in missing information due to
such occlusions is ambiguous due to the diversity of possible scene
configurations and is handled poorly by current methods.

While indoor scene configurations can be extremely rich and di-
verse, we observe that many of them are linked by a common thread
— they are regularly inhabited by humans. Moreover, in similar scene
configurations, humans tend to perform similar actions (cf., [Krasner
2013]). Examples of such actions include sitting on sofas, picking up
books from shelves, or walking around obstacles. Instead of tackling
scene estimation and human performance capture separately, we
propose to exploit the captured human performance to better infer
plausible scene layouts.

A fundamental challenge in reaching the above goal using monoc-
ular video in natural surroundings is occlusion arising out of human-
object interactions. A successful solution needs to tackle two prob-
lems: first, hallucinating information about partially or fully hidden
objects; and second, recovering from noisy human performance
estimates from monocular videos, especially in regions of medium
to high occlusion. It is believed that, as humans, we focus on the
interactions of the actors with the objects in a scene (referred to as
‘anticipation’ in [Neisser 1976]), instead of separately identifying
objects and human performances. Detecting such interactions helps
compensate for missing information in both objects and perfor-
mances. For example, in the video for the scene shown in Figure 1,
we can ‘see’ the person walking behind the desk and sitting down;
from that, we can imagine both the person’s sitting pose over time
and the location of the unseen chair/sofa. Similarly, for the person
picking up an object from the shelf.

We propose iMapper, a data-driven method, that accomplishes a
similar feat by utilizing human motions to infer object placements. As
a data-prior, we leverage a database of interactions between humans
and local objects over time, which we call scenelets (extracted from
the PiGraph dataset [Savva et al. 2016]). Our key observation is
that state-of-the-art methods (see Section 8) are now reliable for
detecting visible parts of the human performance, and hence the
local objects being interacted with, even if partially or fully occluded,
in the scenelets matched to such human performance detections can
be used to provide good candidate object layouts associated with
such detected human-object interactions.

Starting from a monocular video, we use a state-of-the-art human
pose detector to identify initial joint estimates over time and analyze
them to identify ‘informative’ space time snapshots representing
potentially informative interactions. We then utilize the snapshots
to retrieve matching local scenelets and solve a global optimization
to extract a consistent subset of these scenelets, arrange them, and
inherit their associated objects and human actions to produce both
static objects and a human performance that are mutually consistent,
and agree with the input video.

We extensively evaluated iMapper on a range of scenes of varying
complexity. Our quantitative evaluation against manually annotated
ground truth data, and qualitative evaluation through a user study
demonstrate that iMapper produces realistic and plausible object

layout and human-object interaction estimation even for scenes
with significant amounts of occlusion.

In summary, our main contributions are:
(i) proposing the first method that discovers and utilizes human-

object interactions to produce a 3D scene layout from a
monocular video showing human interactions in natural
settings;

(ii) extracting informative space-time human action snapshots
and matching them to a scenelet database; and

(iii) combining the matched candidate scenelets into a consistent
3D scene layout and human performance by a novel global
optimization, and evaluating the proposed iMapper method
on a range of challenging examples.

2 RELATED WORK
We now discuss selected papers across four main related topics to
better position our approach.

Scene analysis and synthesis. With the advances in acquisition
technologies, several large-scale indoor reconstruction datasets have
been created [Chang et al. 2017; Dai et al. 2017a]. Starting from sim-
ilar 3D scene collections, several previous works focus on analyzing
inter-object relationships [Fisher et al. 2011; Hu et al. 2016, 2015; Xu
et al. 2014; Zhao et al. 2014] and hierarchical grammars [Liu et al.
2014]. Such discovered inter-object relationships then can be used to
synthesize new scene variations, e.g., by replacing objects or scene
parts with those in different scenes such that existing relationships
are maintained [Huang et al. 2016; Zhao et al. 2016], using a Markov
Chain Monte Carlo based approach [Yeh et al. 2012], or using a
probabilistic graphical model [Fisher et al. 2012]. More recently, deep
learning methods have been proposed to progressively synthesize
plausible scenes [Wang et al. 2018]. Thesemethods, however, require
full knowledge of the 3D scene layouts instead of attempting to
recover them from image or video footage.

Another line of work recovers layouts from single images [Huet-
ing et al. 2018; Izadinia et al. 2017; Poirson et al. 2016; Satkin and
Hebert 2013; Tulsiani et al. 2018] or RGBD scans [Nan et al. 2012;
Shao et al. 2012] by matching individual 3D objects. Relationships
between the matched objects have been used to further regularize
the recovered layout [Chen et al. 2014; Schwing et al. 2013], or a
collection of primitives to reconstruct accurate room geometry from
images [Del Pero et al. 2013]. While our goal is to also recover an
approximate 3D scene layout of a partially observed scene, we rely
on detected human interactions to reason about occluded objects.

Human pose estimation. With the recent success of deep learning,
we have seen advances both in 2D [Cao et al. 2017; Insafutdinov et al.
2016; Newell et al. 2016; Toshev and Szegedy 2014; Wei et al. 2016]
and 3D pose estimation [Huang et al. 2014; Rogez et al. 2019; Tekin
et al. 2016; Tomè et al. 2017; Zhou et al. 2016]. In particular, the recent
VNect system [Mehta et al. 2017b] demonstrates impressive global
pose estimation from monocular video. Many of these approaches,
however, do not specifically tackle the occlusion problem and fail
under moderate to heavy occlusion. Only a few pieces of existing
work focus on predicting human pose, either 2D [Fu et al. 2015]
or 3D [Huang and Yang 2009; Wei et al. 2012], in the presence
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of slight occlusions from static input images. Wei et al. [2010] and
Shao et al. [2014] leverage user assistance and physical constraints to
handle moderate occlusions. These methods do not reason explicitly
about occlusions arising due to human-object interactions, nor use
interaction priors to recover occluded interactions. In contrast, we
utilize the initial human pose estimates from state-of-the-art human
pose detectors to jointly reason about scene layout and human
pose to synthesize both plausible scenes and human motion even in
scenes with moderate to heavy occlusions.

Human-centric shape analysis. Earlier work that uses observations
of how humans interact with objects focuses on tasks such as object
and event recognition [Delaitre et al. 2012; Gupta et al. 2009; Wei
et al. 2013] and action detection [Yao et al. 2011]. Kim et al. [2014]
propose a shape analysis tool based on a human-object affordance
model that can be used for many applications including corre-
spondence estimation, shape retrieval, and view selection. Subse-
quently, Fu et al. [2017a] utilize a similar model to generate new
objects by combining functional parts of existing objects, while
Pirk et al. [2017a; 2017b] introduce the concept of interaction land-

scapes as a descriptor of an object based on the type of interactions
it can be involved in. More recently, Gkioxari et al. [2018] predict
human-verb-object instances from a single image to characterize
human-object interactions. These methods focus on individual ob-
jects and their (potential) interactions. Our goal is to use partially
observed human motion to recover a full scene and a consistent
human performance.

Human-centric scene synthesis. Recent efforts in scene synthesis
incorporate human actions into scene analysis. Datasets of typical
human actions have been used to infer where specific actions can
take place in a scene [Savva et al. 2014], to regularize scene synthe-
sis [Fu et al. 2017b; Ma et al. 2016], or to regularize reconstruction
of a scene layout from incomplete 3D scans [Fisher et al. 2015; Jiang
et al. 2016]. Although these methods use models of typical human
actions as priors, they do not explicitly use action or motion cues
as input. Thus, unlike our method, they fail to recover occluded
objects.
We were inspired by methods that use human action or motion

cues to reason about the scene geometry. Fouhey et al. [2012] com-
bine human pose estimates with appearance and other geometric
cues to estimate the room cuboid and free (walkable) space inside the
room from a single image or a time-lapse video. Frank et al. [2015]
recover an object layout from a manually defined set of human
actions. Object types and shapes are inferred from specific motions
that the human performs, like tracing the edges of a table with the
hands. Similar to ours, objects are recovered by observing human
motion during interactions, however, the type of motions that the
actor needs to perform preclude working with natural videos.

The recent work of Savva et al. [2016] analyzes interaction snap-
shots, i.e., action and pose labeled RGBD sequences to learn proto-

typical interaction graphs (PiGraphs) to link attributes of the human
pose to the surrounding objects. They show how PiGraphs can
be utilized to generate scenes that correspond to static interaction
snapshots (e.g., lie on bed). Kang et al. [2017] focus on a similar goal
of scene synthesis that explores motion cues. However, their input

is an occlusion-free 3D human motion sequence in contrast to our
target scenes with moderate to severe occlusions.

3 SCENELETS: REPRESENTATION AND DESCRIPTORS
iMapper heavily relies on identifying and utilizing human-object
interactions for scene layout and mapping. We start by describing
how we represent the space of possible interactions as a database of
‘scenelets’, introduce suitable descriptors to query into this database,
and the important notion of interaction-saliency to identify informa-
tive scenelets with strongly correlated human-object interactions
before presenting the iMapper algorithm in the next section.
As our human-object interaction database, we use the PiGraphs

dataset [Savva et al. 2016] that contains a set of scenes captured by
a commodity depth sensor, each containing a human performance
and a set of associated labeled objects (e.g., tables, sofas, chairs,
bookshelves, etc.). From this dataset, we extract short sequences rep-
resenting interactions between the human actor and scene objects.
We call such short sequences of frames scenelets.

3.1 Scenelet Representation
Each scenelet Sl = {{slk,t },O

l } consists of a short motion clip with
known 3D joint positions and a set of static objects. We denote
with slk,t the location of skeleton joint k in frame t of scenelet l .
Objects Ol = {ol1, . . . o

l
n } of scenelet l are defined by a placement p,

a rough approximation of their geometry κ, and a class label b; i.e.,
each object is encoded as a triplet o = (p,κ,b). We assume objects
can only rotate around the up direction, leaving four degrees of
freedom for the placement of an object: p = (x ,y, z,θ ), where x , y,
and z are the location, and θ the orientation of the object. Similar
to the original dataset we approximate the geometry of objects by
unions of cuboids, and the label bli describes the object type (e.g.,
chair, table, bookshelf) from a predefined set of categories. Both the
motion clip and the objects are stored in the local coordinate frame
of the scenelet defined by the pelvis location and the forward-facing
direction of the skeleton in the center frame of the motion clip.
Figure 3 shows some example scenelets.

3.1.1 Scenelet parameterization. When constructing scenelets, we
make a design choice regarding the time-duration of the motion
clip used for each scenelet based on two factors. First, the speed at
which an interaction is performed should not affect the contents of
a scenelet. For example, if a scenelet captures a fast ‘sitting-down’
performance then a slower version of the same interaction should
also be captured by a single scenelet. This property is necessary
to ensure that interactions captured by scenelets are comparable.
Second, we assume that interactions are local in space, i.e., the actor
does not traverse a large distance during the interaction.
We select the duration of scenelets such that the skeleton (i.e.,

the pelvis joint) traverses a constant arc length as this satisfies both
time invariance and locality requirements. For increased robustness,
we smooth the pelvis trajectory when computing the arc length
with 10 iterations of a moving average. We set the spatial extent
of the smoothing kernel to an arc length radius of 1 cm (the input
skeletons were recorded at 30 Hz).
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3.1.2 Scenelet construction. The PiGraphs dataset describes human
performance with a set of 16 joint locations per frame. We start
by sampling the center of each scenelet’s motion clip at regularly
spaced intervals on the arc length of the pelvis joint’s trajectory.
The start and end of the motion clip in each scenelet is then defined
as this center point ± half the scenelet arc length. The objects of the
scenelet are chosen as the subset of objects within roughly an arm’s
reach (within 1 m radius when projected to the ground plane) of
the actor at any point in the motion clip, i.e., the objects the actor
can potentially interact with, manually corrected where needed.

3.2 Scenelet Descriptors
In order to compare two sceneletsS1,S2 and compute their distance
d(S1,S2), we define two descriptors for each scenelet: a motion

descriptor Ψ and an object descriptor Φ. As explained later in this
section, we utilize these descriptors to identify informative scenelets
via their interaction-saliency scores.

3.2.1 Motion descriptor. The motion descriptor Ψ captures the hu-
man actor motion over the scenelet duration and compactly de-
scribes the motion clip of a scenelet with a fixed-length vector
as the concatenation of a fixed number of static pose descriptors
Ψ := (ψ1, . . . ,ψt ), we use t = 15 samples. Static pose descrip-
tors are based on 14 robust joint-line distances as proposed by
Zhang et al. [2016]. The distance between two motion descriptors
is defined using a weighted L2 distance between the corresponding
static pose descriptors, assigning more weight to center frames. The
descriptorsψi should evenly cover themotion and be invariant to the
speed of the motion. Thus, we evenly distribute these samples along
the trajectory of the motion clip in a 17D space of the combined
pose descriptor and global skeleton location (taken to be the 3D
location of the pelvis).

3.2.2 Object descriptor. The object descriptor Φ encodes statistics
of relative object layouts with respect to the actor and is defined
as a set of histograms with one histogram per object category. The
histograms capture the 2D placement of objects, projected to the
ground plane. Our histograms are 5× 5 square grids (in a coordinate
frame with the center pose facing the forward direction) and each
bin Φj describes to what extent any object of the same category in
the scenelet is located in this bin. We define the value in a bin as
the maximum coverage of the bin by any object. To handle both
objects smaller and larger than the bin, we normalize by the smaller
of either the bin area or the object area as,

Φj = max
i

{
A

(
Λ(oi ) ∩ ϕ j

)
/min

(
A (Λ(oi )) , A(ϕ j )

)}
,

where Λ(oi ) is the projection of object oi to the ground plane, ϕi is
the part of the ground plane covered by bin i , and A(x) is the area
of x . Figure 2 shows an example of an object descriptor.

3.3 Interaction-saliency for Scenelets
In order to identify informative human-object interactions, we
associate each scenelet with an interaction-saliency score. Scenelets
with high interaction-saliency are likely to contain informative
interactions with objects and they have objects within interaction
range that are typical or characteristic of the scenelet’s motion.

scenelet table couch

...

0

1

bi
n 

va
lu

e

Fig. 2. Object descriptor Φ. Object descriptors compactly represent the
object arrangement of a scenelet. One 5 × 5 histogram per category stores
the layout of objects of this category relative to the scenelet center.

Thus, we define the uniqueness or saliency of a bin in an object
descriptor to describe how typical an activation of this bin is for
similar motion clips. For example, for a sitting-downmotion, a couch
or a chair at the center bin of the histogram will have high saliency.
The main intuition behind this saliency score is to distinguish
between objects that are consistently related to a given interaction,
and objects that are near the motion but unrelated to the interaction.
In other words, we associate repeated and consistent presence of ob-
jects as a reliable ‘witness’ to the particular interaction represented
by the human pose. The bin-saliency of an object descriptor bin is
computed as a weighted average of that bin’s activation over similar
motion clips, where similarity weight is defined with a Gaussian
kernel in the space of motion descriptors as

hlj =

∑m
k=1 Φ

k
j G(d(Ψk ,Ψl )|0,σ )ρ−1

k∑m
k=1 G(d(Ψk ,Ψl )|0,σ )ρ

−1
k

,

where hlj is the saliency of bin j in scenelet l , Φlj is the bin value of
scenelet l , G is a Gaussian kernel taken over the distance d between
the motion clip descriptors defined earlier (we set σ = 13), and ρl
is the density of scenelets at the origin of scenelet l . We measure
the density of scenelets as the spatial density of the origins of all
scenelets that were obtained from the same scene in order to remove
any bias introduced due to multiple scenelets taken from nearby
parts of the scene. The summation is computed over all the scenelets
in the database and finally, we define the interaction-saliency of a
scenelet Sl as the maximum of the bin-saliency, i.e.,

H l = max
j

(hlj ).

4 ALGORITHM OVERVIEW
The input to iMapper1 is a monocular video showing a person
interacting with objects. Our goal is to synthesize a plausible scene
layout along with consistent human performance that explains the
input video.

When watching performance of a human actor in a scene, there
are several cues that help recover plausible explanations for scene
objects and performance sequences, even under partial occlusion.
Specifically, both presence and absence of human-object interactions
carry valuable hints: on the one hand, detecting a person interacting
with objects provides information about the potential types and
1Project code and benchmark dataset at http://geometry.cs.ucl.ac.uk/projects/2019/
imapper
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Fig. 3. Scenelet’s interaction-saliency. We show a t-SNE embedding
of interaction-saliency scores of the scenelets in our database. Warmer
colors denote scenelets with higher interaction-saliency . The close-ups
show scenelets with a standing sequence, a sitting sequence, and a leaning
sequence. Standing sequences have low interaction-saliency because they
are not specific to the neighboring objects.

locations of the surrounding objects. On the other hand, observing
a person walking carries information about empty regions of the
scene. iMapper explores such cues and proceeds in three main
stages, as described next.
(i) Identifying informative interactions: In Section 5, we identify

potentially informative space-time segments of the input skeletal
motion as useful human-object interactions. Starting from a monoc-
ular video, we first use state-of-the-art human pose detectors [Rogez
et al. 2019; Tomè et al. 2017] to generate an initial human skeleton
track over time. Using the notion of interaction-saliency defined in
Section 3, we assign scores to parts of the skeletal motion by match-
ing against database scenelets and assessing how informative the
parts are based on the interaction-saliency scores of these matched
scenelets.
(ii) Retrieving matched interactions: In Section 6, we formulate an

energy function to help retrieve matching scenelets corresponding
to the skeletal motion segments extracted in the previous step.
During this process we encourage consistency measured based
on how well the fitted models explain the presence or absence of
skeleton joint detections in each video frame. Thematched scenelets,
in turn, provide local objects as candidate completions for the
occluded parts of the scene.
(iii) Scene mapping via global optimization: Finally, in Section 7,

we solve a global optimization by minimizing an energy that ad-
ditionally considers plausibility criteria (e.g., path smoothness and
intersection avoidance) to obtain a static scene layout and a consis-
tent human performance that matches the input monocular video.
Specifically, we formulate a selection problem to extract a subset
of scenelets among the matched candidate ones to constitute our
synthesized scene, and optimize the placement of these chosen
scenelets and skeletons to provide a plausible explanation for the
input video.

5 IDENTIFYING INFORMATIVE INTERACTIONS
Starting from a monocular video, as preprocessing we use existing
human pose trackers to form initial skeletal joint tracks over time,
and then identify informative interaction segments using a data-
driven notion of interaction-saliency.

5.1 Generating an Initial Skeletal Estimate
We apply state-of-the-art static pose detectors to obtain initial
skeletal estimates from the input monocular video. In each frame,
we detect the image-space skeleton of the actor consisting of nj joint
locations along with local 3D pose estimates (i.e., pelvis is always
at the origin). In our experiments, we tested with (i) 2D keypoints
detected by CPM [Wei et al. 2016] and grouped based on the heuristic
of Tomè et al. [2017] or (ii) LCR-Net++ [Rogez et al. 2019]. Given
a video, for each joint k detected in frame t , utk ∈ R2 denotes its
image-space location and ctk ∈ [0, 1] its confidence. While CPM
directly provides confidence values, for LCR-Net++ we compute
them using pose proposal variance (see Appendix A). We note that
these initial pose estimates are often highly noisy in the presence of
occlusions, e.g., around human-object interactions. We next try to
match the initial 2D skeletal pose estimates (using a sliding window
approach) to database interactions by fitting them close to the initial
3D pelvis path to identify informative space-time segments.

5.2 Estimating Interaction-likelihood Score
Our goal is to assign scores to the video frames indicating the
likelihood to contain informative interactions between the actor
and the objects (see Figure 3), based on which we can fetch potential
scene objects. We start by fitting the scenelets in our database to
each video frame and use the interaction-saliency (see Section 3.3)
of the matched scenelets weighted by their matching quality to
determine the probability of an interaction.

min

max

in
te
ra
ct
io
n

sa
lie

nc
y

A
B

C

E

D
Specifically, for any frame at

time t , say {Si } be the top
Ksal matched scenelets (Ksal= 20
in our tests) with corresponding
interaction-saliency given by H i

and matching quality by wi . This
qualitywi measures how well the
3D skeletal joints in frames inside
a window of [t − t̃ , t + t̃] frames
(we use ±10 frames) match the human motion in the scenelet Si

according to the fitting energy defined in Equation 5 .We then define
the interaction-likelihood score for frame t simply as the weighted
average

∑
i wiH

i/
∑
i wi . The inset figure shows an example scene

where the final recovered actor trajectory is color-coded based on
the interaction likelihood of the corresponding frames. The regions
denoted by letters have higher score indicating sitting interactions.

Our goal is to fit scenelets only to parts of the video that contain
interactions, i.e., are informative of the objects in the scene. Thus,
we perform non-maximum suppression of the interaction-likelihood
over the video frames. At this stage, we have assigned scores to
the frames quantifying how informative they are for assisting in
subsequent interaction-based object placement.

6 RETRIEVING MATCHED INTERACTIONS
We quantify the consistency of alignment of a given 2D skeletal track
{utk } with associated detection confidence {ctk } against a scenelet
S over its placement P (see Section 3.1) using an energy function
that penalizes inconsistency as,

L({utk , c
t
k },S, P) = wrLr +woLo , (1)
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initial skeletal track
(Section 5.1)

identified informative frames (Section 5.2)

...

retreived candidate scenelets (Section 6)

... ...

scene mapping with global optimization (Section 7)

reference video frames

...

Fig. 4. Overview. Given an input monocular video, we first extract an initial skeletal track with confidence scores (Section 5.1). We identify informative
frames in the input sequence by assigning each frame an interaction likelihood score based on their matching scenelets (Section 5.2). For each informative
frame, we identify the top matching candidate scenelets (Section 6). Finally, we perform a global optimization that selects and places such candidate scenelets
to form a plausible 3D scene and human performance (Section 7). We show the final synthesized 3D scene, the recovered trajectory of the person (in red), and
some of the detected interacting human poses. The reference video frames show that the synthesized 3D scene provides a plausible explanation.

where Lr measures the reprojection error between the 2D joints and
the projection of 3D joint locations; and Lo penalizes the presence
of occlusions of skeleton joints in the video that are not explained
by occlusions in the scenelet objects. We next describe the terms.

Reprojection term (Lr ). The reprojection term is a standard back
projection term that penalizes the distance from the image-space
2D joint locations detected in the video to the projected scenelet
joints qtk as,

Lr =
∑
t

∑
k

ctk


Πqtk − utk



2
2 , (2)

where Π is the camera projection matrix (we assume the intrinsic
camera parameters to be known) and utk are the detected input 2D
joint locations with respective confidence ctk .

Occlusion term (Lo ). The occlusion term is a novel term that en-
courages consistency between joint occlusions observed in the video
and occlusions of joints induced by scenelet objects as seen from the
camera. In other words, we require the synthesized objects to explain
observed occlusions. This cost is asymmetric, i.e., missing joint
detections occur either due to false negatives in joint detections, or
due to occluding objects. The reverse is, however, not true: the joint
detector may, in some cases, also predict the position of occluded
joints with high confidence. We define an asymmetric occlusion
error as,

Lo =
∑
t

∑
k

F (v(qtk ,O,Π), c
t
k ), (3)

where v(qtk ,O,Π) denotes the visibility of joint qtk given the scene
objects O and the current camera information Π. In order to have
non-zero gradients that are necessary for gradient-based solver, we
define v as the signed distance of joint qtk to the occlusion volume

induced by O that is the volume that remains invisible from the
camera. We then define the asymmetric occlusion error F for a joint
and a set of objects is as,

F (v, c) =

{
(c − 0.5)2v2 if c − 0.5 < 0 and v > 0
0 otherwise,

(4)

where c ∈ [0, 1]. Note that this function is non-zero only when low-
confidence joint detections are explained by visible joints. Finally,
we can quantify the alignment error between given 2D skeletal
tracks against a scenelet S as,

L⋆({utk , c
t
k },S) = min

P
L({utk , c

t
k },S, P). (5)

We solve Equation 5 by a gradient-based optimization and retrieve
the top Kglob = 5 matching scenelets. For efficiency, we only con-
sider the best Kloc = 200 scenelets from Section 5.2 in this section.
Next, we describe how to globally select among these retrieved
scenelets and obtain a final scene layout.

7 SCENE MAPPING VIA GLOBAL OPTIMIZATION
Our goal is to synthesize a scene consisting of 3D joint locations
qtk ∈ R3 for each video frame, describing the human performance,
and a set of objects O = {o1, . . . ono }. The 3D joint locations at
each frame are obtained from either one of the matched candidate
scenelets, or fitting a 3D skeleton to the 2D joint detections in
the video; while objects are only taken from the selected candidate
scenelets. Which of the twomodels we fit to a given part of the video
depends on two factors: the estimated amount of joint occlusion
observed in the video (i.e., the confidence of the joint detection
signal) and the estimated probability of object interactions.
First, in segments of the video with high interaction-likelihood,

our task is to pick a scenelet among the top Kglob matches obtained
previously, i.e., we have to solve a selection problem. Second, in
segments of the video with low interaction-likelihood, matched
scenelets are less useful. Instead, wematch the initial local 3D human
pose estimates to the image-space joint detections. In the following,
we describe these two scenarios, and then define a global energy
that when minimized produces the final solution.

7.1 Video Segments with High Interaction-likelihood
Here, we pick among the matched scenelets to both populate the
scene with objects involved in interactions and explain occlusions
of joints due to these objects. Thus, joint occlusions can help in
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both choosing and placing the scenelets. For a given video sequence,
we would like to choose and place a scenelet such that the objects
of the scenelet explain the joint occlusions observed in the video
sequence.

We start by modeling the assignment of scenelets in our dataset
to time intervals in the video. Given a video with nν frames and a
dataset withm scenelets, only a single scenelet can start at any frame
of the video. The (unknown) scenelet assignment can therefore be
expressed with a binary matrix X ∈ {0, 1}m × nν with

Xl t =

{
1 if scenelet l starts at video frame t
0 otherwise.

The constraint that scenelets should not overlap in time can be
formulated as,

ηt =
∑
l

max(t,nl )∑
i=1

Xl (1+t−i) ≤ 1, t = 1 . . .nν ,

where nl is the number of frames in scenelet l and ηt measures
the integer number of scenelets that overlap with frame t and thus
needs to be less than or equal to 1. Since only a single scenelet
can start at any frame t , we model scenelet placement with one set
of parameters per frame P = {P1 . . . Pnv }, where Pt = (x ,y, z,θ )
is the placement of the scenelet starting at t , with x , y, and z the
location and θ the orientation of the scenelet. The 3D joint locations
q̂tk in video sequences covered by scenelets can then be defined as a
function of the placement P and the scenelet assignment X,

q̂tk (P ,X) =
∑
l

max(t,nl )∑
i=1

Xl (1+t−i) T (P(1+t−i))s
l i
k , (6)

where sl ik is the 3D position of joint k in frame i of scenelet l and
T (Pt ) is the transformation due to placement Pt .

Finally, the objects in the scene are obtained from all scenelets
that have been assigned to the scene as,

O(P ,X) =
⋃

{(l,t ) | Xl t=1}
T (Pt ,O

l ),

where we denote with T (P ,O) the transformation of objects in O to
the placement P , i.e., T (P ,Ol ) = {(T (p),κ,b) | (p,κ,b) ∈ Ol }.

7.2 Video Segments with Low Interaction-likelihood
Here, we fit static skeletons to each frame as the segment likely
contains unoccluded human performance without object interac-
tions. Since the number of degrees of freedom for human poses is
smaller than for human-object interactions, the space of possible
human poses can be covered more accurately than the space of
possible human-object interactions. Thus, fitting static skeletons to
the video gives better performance in unoccluded sequences that
do not contain interactions.
The aforementioned 3D human pose reconstruction methods

[Rogez et al. 2019; Tomè et al. 2017] retrieve the best matching 3D
skeleton pose for a given frame. Such pose, however, is defined in
the local space of the skeleton and does not give us the placement
of the skeleton in the scene. We fit the retrieved 3D skeleton to
our video by optimizing the 3D placement of the skeleton, i.e., the
variables are only placement attributes of the local poses. We fit

skeletons only to frames that do not have any scenelet assignment,
i.e., ηt = 0. In such frames, the joint locations q̌tk for video sequences
are then defined as,

q̌tk (P ,X) = (1 − ηt ) T (Pt )atk , (7)

where the first term is only non-zero if no scenelet is assigned
to frame t , and atk is the local skeleton pose computed by using
Tomè et al.or LCR-Net++, Pt = (x ,y, z,θ ) is the placement of the
skeleton in frame t , andT (Pt ) is the transformation to placement Pt .
Combining Equations 6 and 7, we define the location of any joint
qtk in the video as,

qtk (P ,X) = q̂tk (P ,X) + q̌tk (P ,X). (8)

In the following, we will omit the explicit dependence of qtk (P ,X)

and oi (P ,X) on P and X for a less cluttered notation.

7.3 Scene Mapping via a Global Optimization
We have now set up our search space over possible configurations
of objects and actor motions, parameterized through the scenelet
and pose placements P and the assignment matrix X. We define an
energy in this space that can be minimized to obtain a plausible
configuration of objects and actor motions given the observations
in the video as,

Lglobal({u
t
k },X, P) = L({utk },S, P) +wsLs +wcLc +wmLm , (9)

where the first term denotes how well the current configuration
explains the image-space joint detections as described in Equation 1.
Ls encourages smoothness among human performance; Lc penal-
izes intersections between objects; and Lm penalizes intersections
between the motion clip and objects.

Smoothness term (Ls ). The smoothness term ensures continuity
of the synthesized motion by measuring the finite difference ap-
proximation of time derivative of the synthesized joint locations
as,

Ls =
∑
t



qtλ − qt−1
λ



2
2 , (10)

where λ is the index of the pelvis joint at video time of frame t .

Object intersection term (Lc ). The object intersection term dis-
courages object-object penetration. In our flat scene assumption,
all objects are placed on the ground plane. We approximate inter-
sections in 2D, using the projections of objects to the ground plane.
Again, to obtain non-zero gradients, which are necessary to resolve
intersections in a gradient-based solver, we quantify the amount of
penetration using signed distance functions as,

Lc = −
∑

bi,bj∧θi,θ j

(∫
Λ(oi )

δ−oj (x) dx +

∫
Λ(oj )

δ−oi (x) dx

)
, (11)

where δ−oi is the negative part of the signed distance function of
object oi , Λ(oi ) is the projection of object oi to the ground plane, x
is a point on the ground plane, bi is the label of object oi , and
θi its orientation. We do not penalize intersecting objects that
have the same label and orientation, since we assume these to be
representations of the same object placed by different scenelets.
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Fig. 5. Interaction-guided scene layout. Plausible object layout and human movement as predicted by iMapper on various monocular videos. (Bottom-
row) For qualitative evaluation, we overlay, shown from top-view, estimated scene layout versus annotated ground truth. For quantitative evaluation, please
refer to Tables 1 and 2. Please refer to supplemental for videos and results.

Motion intersection term (Lm ). The motion intersection term dis-
courages humans going through objects. Specifically, the trajectory
of the human motion provides information about empty regions
in the scene. For efficiency, we compute the intersection in 2D on
the ground plane and focus on three joints only: the pelvis joint
and the two knee joints. In practice, we have found that taking
the maximum 2D distance of these three joints to objects allows a
reasonable estimation of full 3D intersections in our scenes. We use,

Lm =
∑
t

max
q∈{qtλ, q

t
Γl , q

t
Γr }

min
i
δoi (q), (12)

where δo is the signed distance function of object o, and qt
Γl , q

t
Γr are

the left- and right-knee joints, respectively.

Global optimization. We obtain the final solution as,

X⋆, P⋆ = argmin
X,P

Lglobal({u
t
k },X, P). (13)

We can then utilize the optimized assignment X⋆ and placement
P⋆ to extract joint locations qtk and the placements of objects oi
from selected scenelets and skeletons.
The above optimization is challenging given the mix of discrete

and continuous parameters, and a highly non-linear energy function.
We simplify the task by progressively performing the optimization.

(i) First, we estimate interaction-saliency for all frames of the
video (as described in Section 5.2).

(ii) Next, starting with a smaller set of candidates (Kloc) for the
high-interaction likelihood video segments (as described in Sec-
tion 6), we evaluate a selection of computationally-efficient energy
terms (Equations 2, 3, 10, 12) locally.
(iii) Finally, by committing to a smaller set of high-scoring candi-

dates (Kglob, as described in Section 7), we optimize placements P
of all fitted models in the scene, both local skeletons and scenelets,
using the full energy term. Starting from the local optima from (ii),
we optimize Equation 13, which translates to adding Equation 11

and inter-scenelet versions of Equations 3 and 12 to the energy
function.

The scenelet assignmentX is optimized indirectly by filtering out
candidates in each stage of the decomposed optimization instead of
immediately invoking an integer program. For simpler scenes, we
perform one optimization for all combinations of the few remaining
candidates and keep the combination that results in the scene with
the lowest fitting energy.

For each of the three stages, described respectively in Sections 5.2,
6 and 7, we perform an optimization (using the quasi-Newton solver
L-BFGS-B [Byrd et al. 1995]) over the placement parameters P .
We implemented the optimization in Tensorflow2 and optimize
using a Titan X (Pascal) with 12GB memory. The gradient tolerance
termination criterion is set to its minimum value 10−12. We optimize
fitting all scenelets (≈ 1500) to a single frame at once with the terms
in Equations 2 and 10 to estimate the interaction-likelihood score.
For each local maximum of the interaction-likelihood function over
time, we re-optimize the top Kloc = 200 fits as described in (i) in
batches of 10-25 due to the larger memory requirements of our
implementation of Equation 3.

8 RESULTS AND DISCUSSION
We tested iMapper on a range of input monocular videos of varying
complexity. For each of these benchmark videos (recorded in-house),
we also manually annotated ground truth object placements, 3D
actor poses, and action labels. Table 1 shows statistics of these videos
while Figure 5 shows some examples. After we qualitatively discuss
some results, we report how ground truth was annotated and explain
our evaluation protocol. Next, we provide quantitative evaluations,
comparisons against baseline methods, and an ablation study. Please
refer to the supplemental for the full input videos and annotations.

2http://www.tensorflow.org/api_docs/python/tf/contrib/opt/ScipyOptimizerInterface
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Fig. 6. Object detection comparison. Qualitative comparisons to state-of-the-art object detection methods. Note that FRCNN and Mask-RCNN both
produce only 2D image-space segments. iMapper synthesizes 3D scenes that plausibly match the video, even in sequences where the objects and the human
performance are occluded. Encircled in red in the bottom depth map are the typical errors near depth discontinuities obtained from image depth estimators.

Qualitative evaluation
We show our results on some of the 15 different scenes from the
Interaction Benchmark Dataset (see Section 8.1) in Figures 1 and
5. For each scene, we show a reference video frame. The recovered
trajectory of the actor’s pelvis is shown as a colored line and the
colored skeleton shows an occluded actor pose. To help assess that
iMapper finds plausible object arrangements and actor poses for
occluded parts of the scene, we also show renderings of our results
from the top view along with overlaid ground truth object locations.
To better visualize the detected orientation of objects, we use object
bounding boxes to scale and place category specific proxy object
geometries in our scenelets – please note the meshes are not output
by our method. Please refer to supplemental for full videos of the
input and the generated scenes.
Note how much information is encoded in the interactions, en-

abling plausible reconstruction of the original scenes. Although we
cannot hallucinate objects that are not interacted with, the quality
of the generated scenes improves over time as more interactions
‘reveal’ the true underlying scene. As shown in Figure 13, as the same
environment is explored over time, our system recovers larger parts
of the object arrangement. Further, perturbations to the input (e.g.,
in the form of the same action being performed by different people,
or at different times) lead to slightly different, but still plausible and
consistent scenes.

8.1 Interaction Benchmark Dataset (i3DB)
We created a benchmark dataset consisting of 15 scenes by semi-
automatically annotating both object locations and 3D world-space
actor poses for each input video. To the best of our knowledge, this

is the first benchmark dataset for scenes with medium to heavy
occlusion containing both object and 3D human pose annotations
over time.

8.1.1 Object location annotations. For object locations, we physi-
cally measured the dimensions of the scene objects and positioned
objects as collections of oriented bounding boxes in the ground
truth scene to minimize video reprojection error while using known
camera intrinsics. We also added class labels (e.g., chair, table,
shelf) for each individual object. To evaluate the performance of
iMapper and alternative methods in terms of object placement
quality, we define two metrics (see Section 8.2 for comparison
results).

Object Location Measure 1 (ObjCt). We define the metric ObjCt
that counts the number of objects detected along with correctly
labeled object class. We consider objects of interest as those that are
participating in at least one interaction during the recorded video.

Object Location Measure 2 (ObjPosn). We define the metric Obj-
Posn that measures themean and standard deviation of the distances
between the predicted and the ground truth object centroids in the
scene.

8.1.2 Human pose annotations. For human poses, we used an as-
sisted approach to generate the ground truth since manually anno-
tating 3D poses in each frame is not feasible for 1000s of frames. We
started with estimated 2D joint locations [Wei et al. 2016] and then
manually corrected them. These corrected 2D locations were then
lifted first to local 3D space by running [Tomè et al. 2017] – which
works well in the absence of occlusion – and then to world space
3D using the reprojection and smoothness energy terms described
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in Section 6. Finally, we inspected the output 3D path, moved the
skeletons to fit the ground truth scene layouts from Section 8.1.1
and added these corrections as additional constraints for the hip
joints to the optimization. This process was repeated until we found
no more significant errors. The number of corrections depended
on the amount of occlusion in the scene, typically ranging from
10-50. When Tomè et al. [2017] results deviated significantly from
the actual human pose, we manually corrected the 3D poses using
Blender. Finally, we used ray-tracing to establish ground truth
visibility of the 3D joints using the oriented bounding boxes of
the ground truth scene layouts.

To evaluate the performance of iMapper and alternative methods
in terms of 3D human performance reconstruction quality, we define
two metrics (see Section 8.3 for comparison results).

Human Pose Measure 1 (PoseEst). As a direct measure, we report
the root mean square error over 14 joint locations that are common
across the annotated 2D poses and 3D poses iMapper recovers. We
compute this error both in local 3D (using origin at pelvis) space
(‘LC’) and world space (‘WC’), where available.

Human Pose Measure 2 (ActnDetn). As an indirect measure, we
train a pose-based action recognition network and evaluate how
well the output poses can predict the ground truth action labels
manually annotated at each frame of the input video. Specifically,
we use the pose-based action recognition network proposed by
Luvizon et al. [2018], which takes as input 3D human poses (rep-
resented as 16 joints) for each video clip (we use a window size of
20 frames) and outputs the probability of each action class. The
original network is trained using the NTU dataset [Shahroudy
et al. 2016] that provides 60 action classes. Most of these action
classes are performed both in sitting and standing positions (e.g.,
eating a snack, brushing teeth) and are not covered by the scenelet
dataset we use [Savva et al. 2016]. In order to avoid any ambi-
guities, we retrain this network using action classes that are in-
cluded both in our and the NTU dataset (i.e., walk, sitDown, and
standUpFromSittingPosition).

8.2 Evaluating Object PlacementQuality
Object Location Measure 1 (ObjCt). We compare our method to

per-frame region detection methods, FRCNN [Ren et al. 2017] and
Mask-RCNN [He et al. 2017]. We show qualitative comparisons
in Figure 6, and quantitative results in terms of metric ObjCt are
given for Mask-RCNN in Table 1 (column ‘MR’). For Mask-RCNN,
we count the number of objects where at least 50% of the object’s
region was detected and correctly labeled on average, over all the
frames. Since FRCNN andMask-RCNN are designed to detect visible
objects, they naturally fail to detect any objects ‘hidden’ behind
visible objects leading to a low number of detections. Other systems
that rely on these methods as their primary building blocks will
have similar problems in occluded regions. In comparison, iMapper
detects all the objects that participate in an interaction even if they
are occluded.

Object Location Measure 2 (ObjPosn). We compare against per-
pixel monocular depth estimation [Chakrabarti et al. 2016] using
the second metric, ObjPosn. Table 1 shows the mean and standard

deviation of the distances between the predicted and the ground
truth object centroids in the scene for monocular depth estimation
(column ‘GT+MD’) and iMapper (column ‘iM’). For the monocular
depth map, we approximate the object centroid as the mean world
position of all samples that are inside themanually annotated ground
truth 2D region of an object (i.e., providing an upper bound on
region detectors). Objects without a single visible pixel are ignored.
The depth map contains only limited information about partially
or fully occluded objects, resulting in large errors. As shown in
Figure 6, fourth column, even for visible regions the estimated depths
are smoothed out and fail to capture the object specific layout. In
contrast, iMapper produces plausible objects along with their spatial
locations.

8.3 Evaluating Actor PoseQuality
Human Pose Measure 1 (PoseEst). Most monocular 3D pose de-

tection methods compute only local 3D poses, i.e., joint locations
relative to pelvis, limiting our choice of baselines for our first metric.
We compare to Tomè et al. [2017], and LCRNet++ [Rogez et al. 2019]
which both output local 3D joint locations, but do not provide world-
space coordinates. Therefore, we use our method to optimize and
lift their local predictions to world space (referred to as Tome3D and
LCRNet++3D, respectively) and compare them in Table 2. While
errors in local coordinates are reported in cm units, we report the
errors in world coordinates as a fraction of the top-view 2D diagonal
of the axis-aligned box of the ground truth path to be invariant
to scene sizes. We define five categories based on the amount of

Table 1. Performance statistics. List of scenes presented showing frame
count (ct., N ), fraction of frames with occlusion (frac., η), number of objects
in the scene (obj., so ) and number of objects with interactions (si ). For
comparison, we list number of objects with interactions detected by Mask-
RCNN (MR, nMR) and by iMapper (iM, niM). Also, we show quality of
depth estimation error in cm by ground truth mask + MonoDepth (GT+MD,
µGM(σGM)) and iMapper as mean (s.d.) (iM, µiM(σiM)) compared against
ground truth annotations. Note that the scenes are ordered based on
increasing difficulty which we assess by higher N ∗ η value.

scene ct. frac. obj. MR iM GT+MD iM
N η si (so ) nMR niM µGM(σGM) µiM(σiM)

Scene1 80 0.00 1 (2) 2 1 120 (-) 45 (–)
Scene2 49 0.84 2 (4) 2 2 197 (24) 135 (13)
Scene3 130 0.57 2 (4) 4 2 120 (10) 72 (06)
Scene4 115 0.77 2 (2) 2 2 203 (12) 70 (57)
Scene5 120 0.82 1 (1) 1 1 191 (-) 25 (–)
Scene6 148 0.93 3 (4) 2 3 230 (52) 72 (41)
Scene7 254 0.65 3 (3) 1 3 243 (98) 70 (55)
Scene8 182 1.00 4 (4) 2 4 229 (48) 53 (49)
Scene9 189 0.98 4 (4) 2 4 216 (50) 69 (38)
Scene10 224 0.97 4 (4) 1 4 259 (101) 51 (21)
Scene11 539 0.49 6 (11) 5 6 174 (73) 83 (29)
Scene12 380 0.84 5 (5) 4 5 98 (36) 57 (32)
Scene13 348 1.00 7 (14) 8 7 263 (117) 81 (43)
Scene14 430 0.86 5 (5) 5 5 242 (68) 58 (28)
Scene15 600 0.98 12 (14) 7 12 287 (120) 68 (24)

µ 252.5 0.78 4.1 (5.4) 3.2 4.1 205 (62.2) 67 (33.5)
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Scene Tome3D iMapper

Scene12

Scene11

Fig. 7. Human pose detection comparison. Qualitative comparisons to Tomè et al. [2017], which produces image-space and local 3D poses. Note that
Tomè and colleagues do not compute world space positions of the skeletons. For better comparison, we position them in world coordinates using the hip
locations as estimated by iMapper. Relevant differences between the methods are marked with red arrows. Note that our method gives plausible skeleton
poses in many cases whereas the method of Tomè et al. fails, especially in occluded areas.

error: BAD(> 25cm), FAIR(20 − 25cm), FINE(15 − 20cm), GOOD(10 − 15cm),
EXCELLENT(< 10cm).
Both Tome3D and LCRNet++3D are designed to capture the

actual poses seen in the input sequence and thus achieve reasonable
performance on average. However, they often produce unrealistic
poses in occlusion regions as seen in the supplemental video. On
the other hand, the goal of our method is to generate plausible poses
even in highly occluded interaction regions.While showing the same
interactions, the poses in the matched scenelets may differ from
the ground truth poses resulting in lower accuracy (we distinguish
between accuracy and plausibility). Nevertheless, the accuracy of
the poses generated by iMapper are still in FINE−GOOD range. Qual-
itative comparisons to Tome3D in Figure 7 verify these observations.

Table 2. PoseEst evaluation. Comparing iMapper against Tome3D and
LCR-Net++3D, which both return only local coordinates (LC) and we use
our optimization to lift them to world coordinates (WC). LC units are in cm,
WC units are in fraction of the top-view 2D diagonal of the axis-aligned
bounding box of the ground truth path.

Tome3D LCR-Net++3D iMapper
LC WC LC WC LC WC

Scene4 FINE 19.9
(+70%)

FAIR .197
(+0.2%)

FAIR 21.5
(+83%)

FAIR .196 GOOD 11.7 BAD .225
(+15%)

Scene5 FINE 18.5
(+13%)

FINE .103
(+11%)

FAIR 21.9
(+34%)

GOOD .093 FINE 16.4 FINE .123
(+32%)

Scene7 BAD 26.3
(+39%)

FAIR .166
(+108%)

FAIR 20.1
(+6%)

FINE .123
(+54%)

FINE 19.0 GOOD .079

Scene10 FINE 16.6 GOOD .083
(+30%)

FAIR 22.3
(+34%)

FINE .135
(+111%)

FINE 19.1
(+15%)

GOOD .064

Scene11 GOOD 12.5 FINE .139
(+32%)

GOOD 14.0
(+12%)

FINE .105 FINE 17.3
(+39%)

FINE .127
(+20%)

Scene12 GOOD 13.2 FINE .114
(+64%)

GOOD 13.3
(+1%)

GOOD .070 FINE 16.2
(+23%)

GOOD .080
(+14%)

Scene13 FAIR 23.9 FINE .111
(+96%)

BAD 25.9
(+8%)

GOOD .057 BAD 28.1
(+17%)

GOOD .059
(+4%)

Scene14 GOOD 11.7 GOOD .089
(+45%)

GOOD 12.8
(+9%)

GOOD .065
(+6%)

GOOD 14.8
(+27%)

GOOD .062

µ 17.11 0.117 18.33 0.095 18.47 0.087

In non-occluded frames, their poses are very close to ours (up to the
smoothness term Ls ). In occluded frames however, Tome3D returns
unrealistic poses while iMapper continues to generate plausible
poses in alignment with the discovered interaction. Figure 8 shows
how such errors evolve over time for the three methods as well as
the number of occluded joints in the ground truth.
We also compare to Vnect [Mehta et al. 2017b] that provides

world-space 3D pose estimates. A qualitative comparison is given
in Figure 9. Since we do not have direct access to their source code,
we compare to this method quantitatively using the same scene as
in Figure 9 which is from the MPI-INF-3DHP dataset [Mehta et al.
2017a], where a relatively high-quality ground truth is available.
While Vnect achieves an RMSE error of .399 and 28.9 in world-space
and local-space respectively, iMapper achieves a lower error of .235
and 23.5.

Human Pose Measure 2 (ActnDetn). In Table 3, we compare the
results of a pose-based action detection network [Luvizon et al.
2018] on pose sequences obtained by Tome3D, LCRNet++3D, and
iMapper. We report precision and accuracy for the duration of the
sequence when interactions happen (by excluding the regions where
the ground truth action label is walking) to focus evaluation around
frames with occlusion. While Tome3D achieves reasonable preci-
sion, it does not produce reasonable 3D poses in occluded regions
leading to low recall. While LCRNet++3D achieves higher recall, the
estimated poses are often not accurate leading to low precision. In
comparison, iMapper generally improves both in terms of precision
and recall. Specifically, whenwe consider regions where interactions
occur, iMapper improves by a large margin by recovering plausible
poses from matching scenelets.
To verify that the scenes and human performance captures that

iMapper generates are aligned with user expectations, we also
conducted a comparative user study. For each question, we showed
the users an input video of initial 2D pose estimates which are often
potentially noisy and miss joints in occlusion regions. Note that
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Fig. 8. Comparison of the position accuracy of occluded joints over time.
Green background denotes time intervals that contain interactions. Lower
values are better. For world space, error metrics have been normalized by
the top-view diagonal of the scene bounding box. Our algorithm detects and
processes interactions and hence recovers from space-time segments with
occlusions, as shown by the lower average error in green regions. However,
outside interactions, the algorithm fits static skeletons to each frame,
resulting in comparable performance to other methods. LCR-Net++3D
tends to place ankle joints intersecting the floor during interactions, whilst
Tome3D often yields physically not possible human poses. Note that
although our error is not lowest in all frames, the poses detected by iMapper
typically represent more plausible interactions, as shown in Table 3.

we do not show them the RGB videos as this is essentially also the
input to iMapper and baselines. As output, we showed two different
explanations of the input (i.e., 3D scene and human performances)
generated by iMapper and one of the two baseline methods (see
Figure 10). For iMapper, we present the raw output results. For the
two baselines, we accompanied the 3D pose trajectories obtained
by Tome3D or LCRNet++3D with objects detected by MaskRCNN.
For any object detected by MaskRCNN and matching the ground

Fig. 9. Comparison with VNect. State-of-the-art 3D human pose
detection from monocular video VNect [Mehta et al. 2017b] breaks down in
regions of occlusion (VNect was not designed to handle occlusions), while
iMapper continues to produce plausible results because of explicit occlusion
detection and handling. Bottom row shows the recovered human pose from
another camera angle for better visibility.

Table 3. ActnDetn evaluation. Comparison of pose-based action
detection [Luvizon et al. 2018] on human performance reconstruction by
iMapper against those from Tome3D and LCR-Net++3D. We report both
precision and recall for the parts of the input sequences that are annotated
to be non-walking in the ground truth. We also report mean and (std. dev.)
precision and recall across all the scenes. The corresponding pose-based
action detection numbers for all frames (i.e., walking or not) across scenes
in this table are quite similar and included in supplemental material.

Tome3D LCR-Net++3D iMapper
precision recall precision recall precision recall

Scene4 0.00 0.00 0.00 0.00 0.36 0.29
Scene5 0.00 0.00 0.00 0.00 0.13 0.09
Scene7 0.07 0.01 0.13 0.12 0.45 0.33
Scene9 0.00 0.00 0.15 0.15 0.57 0.57
Scene10 0.08 0.03 0.11 0.11 0.22 0.18
Scene12 0.15 0.12 0.36 0.36 0.64 0.51
Scene13 0.00 0.00 0.14 0.14 0.24 0.24
Scene14 0.08 0.07 0.39 0.39 0.50 0.50
Overall 0.05 0.03 0.16 0.16 0.39 0.34

(0.06) (0.04) (0.15) (0.15) (0.18) (0.17)

truth, we compute the 3D object centroid from a monocular depth
estimate [Chakrabarti et al. 2016] and place the object to the centroid
location by snapping it to the ground truth floor andmanually orient
the object based on the ground truth annotation.

8.4 User Study
We asked the users to select the method output that resembles
the input the most judging based on how plausible the recovered
interactions along with the involved objects are. We conducted the
study for 5 scenes (Scene7, Scene9, Scene10, Scene13, Scene14) which
resulted in a total of 15 pairs of queries (first and second ordering
for any video was also flipped at random); 10 of these queries

Fig. 10. User study. We showed users an input video of initial 2D pose
estimates and two different videos selected at random among the three
explanations generated by iMapper and the two of the baseline methods.
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compared iMapper to alternatives whereas 5 queries compared
the two alternative methods to each other. We had 25 unique users
answer the queries for a total of 590 answers. We asked each query
twice in random order to measure the consistency of the users and
weighted the answers by the consistency. Users preferred iMapper
output vs LCRNet++3D 99% the time and always preferred iMapper
output over Tome3D. When comparing LCRNet++3D vs Tome3D,
users preferred Tome3D 91% of the time. There is a strong user
preference for iMapper outputs since the generated scenes are
consistent with the input motion. In contrast, alternative methods
most of the time result in missing objects involved in interactions
due to occlusions, and lower quality of captured human performance,
specifically in the occlusion regions.

8.5 Ablation Study
We report the effect of removing some of the terms from our opti-
mization in Figure 11. For example, the occlusion term has a heavy
influence if multiple joint locations are occluded in the video. Recall
that our occlusion term is assymmetric, so that more occlusion
always has less cost. The couch can thus be optimized to be closer to
the camera to occlude more of the scene (the camera is at the bottom
center of the image). The smoothness and reprojection terms also
affect the result since they are used throughout the entire pipeline.
Omitting the smoothness term can lead to path deformations, while
leaving out the reprojection term removes the anchoring of the
motions to the video and permits the smoothness term to possibly
contract the path.

Hold-one-out validation. We also evaluated iMapper on a hold out-
set taken from the original PiGraphs dataset. We pick a single scene
and remove the scenelets that were generated from this scene from
our database, accounting for about 10% of our scenelets. We compare

w/o smoothness term

high occlusion termall terms

w/o reprojection term

input scene

Scene10

Fig. 11. Ablation study.We test the effect of various terms on the solution
for the scene shown in the center.

to the ground truth objects given in the PiGraphs dataset through
manually established correspondence, and recorded deviations in
world-space object placement using the ObjPosn metric. The mean
reconstruction error was 110 cm (s.d. 56 cm) with all relevant objects
detected.

8.6 Limitations
We next discuss the current limitations of our method.
(i) In our formulation, we directly inherit human performance from

the selected scenelets. Hence, we cannot correct any noise in the
human motion as recorded in the interaction database. This can
be addressed either by using a higher fidelity data capture or
adaptively denoising the motion sequence.

(ii) Since our method only uses 2D joint detections from the raw
video and in absence of any image-space cues (i.e., the objects
are occluded), the method cannot provide any estimate about the
size and extent of the objects, and hence cannot often distinguish
between say a chair or a sofa.

(iii) Our method expects enough visible movement in the input video
to trigger sufficient fraction of 2D joints to be detected. Otherwise,
subsequent scenelet matching will fail, and in absence of matched
scenelets, the object layout will remain incomplete. Similarly,
occluded objects that remain un-interacted by the actor are likely
to go undetected.

(iv) Finally, since our method builds on the expectation that people
react similarly in similar settings, it will naturally get confused
when this assumption is broken. For example, if a person decides
to hand-walk, or use a sofa as a bed, etc.

9 CONCLUSION AND FUTURE WORK
We presented iMapper that takes as input a monocular footage of a
person interacting with objects in a physical space and produces a
plausible scene layout along with consistent human performances
explaining the footage. iMapper detects and leverages human-object
interactions in the input video to resolve medium to high level of
occlusions that occur in such footage. At the heart of iMapper lies
a novel data-driven method to assign interaction-likelihood scores
to video segments that help identify space-time moments when
matched human-object interactions provide reliable cues about
the surrounding scene layout. Our method retrieves corresponding
interaction-salient scenelets as candidates fitted to the informative
video segments, and then selects and positions them to form a global
scene layout and 3D human pose estimates. We introduced the i3DB
benchmark dataset for evaluating quality of interactions computed
by different methods. Our qualitative and quantitative evaluation
demonstrate that iMapper produces realistic scene layouts as well
as 3D pose estimates.

9.1 Future Directions
Exciting research directions lay ahead as we are only starting to
capture, analyze, and understand the space of (human) interactions,
or interaction landscapes (cf., [Pirk et al. 2017b]). Below we discuss
some of the immediate issues.

Capturing richer interaction databases. Current datasets only cap-
ture limited variety of interactions, both in terms of different types

ACM Trans. Graph., Vol. 38, No. 4, Article 92. Publication date: July 2019.



92:14 • Monszpart, Guerrero, Ceylan, Yumer and Mitra

of interactions and variance for each interaction type. For example,
we miss examples of interactions with small objects (e.g., picking up
a cup/glass, using pots and pans in kitchens, lifting a bag or suitcase),
or examples of the different ways that people sit in sofas, couches,
chairs, etc. While significant progress has been made in capturing
static environments at high geometric detail, capturing interactions
remains fundamentally difficult because of heavy occlusion arising
due to the interactions. One possibility is to separate the capture
of static geometry (e.g., with mobile 3D scanners) from the capture
of interactions using a mix of sensors such as IMU sensors, RGBD
scanners, markers, etc.

Utilizing scene priors. So far we used signals only from human-
object interactions. However, in sceneswith heavy occlusion, scenelet
matching with partial (occluded) information may not be sufficient
to accurately ground object positions. One possibility is to addi-
tionally use scene statistics and local context, as has been heavily
utilized in scene synthesis research, to regularize the interaction-
based layout reconstructions.

Fig. 12. iMapper result on an input scene with multiple actors.

Handling multiple actors. A next opportunity will be to extend
iMapper to handle multiple actors. This will involve extending the
2D human pose detector to multiple actors by tracking instance
correspondence over time. Although our method naturally gener-
alizes to this scenario, we have to obtain suitable priors to handle
human-human interactions. Figure 12 shows a first result.

Recovering interactions over large timescales. As shown in Fig-
ure 13, iMapper has only a chance of recovering scene arrangements
once people interact with parts of the environment. This suggests
that the approach gets better as we ‘observe’ the scene over larger
timescales, ideally days or weeks. However, then our static scene
assumption breaks down as objects are going to be shifted and
moved around. Hence, we would like to extend our approach to also
capture space-time object movements, starting with rigid movement
of objects, such as a moving chair.
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Fig. 13. Progressive scene exploration.We show results of four different
videos taken from the same scene. As interactions with more objects are
made available, we can recompute the results to synthesize additional
objects. Variations of scene explorations, for example performing the
interactions in reverse order, as shown in the bottom row, give slightly
different, but comparable and plausible results.
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A KEYPOINT CONFIDENCE USING LCR-NET++
When using LCR-Net++, we estimate confidence of the 2D detection
keypoints as

vk = var
qik ∈pose proposals

(
qik

)
/
(
1 + exp

(
−0.2s ′ + 3.5

) )
ck (vk ) = 1/[1 + exp {−10 exp (log(vk )/P99 (log(vk ))) + 20}]

where,vark denotes the variance of the 3D joint position among the
grouped pose proposals, and P99 denotes the 99th percentile of loд
joint variances over the whole recording, assigning high confidence
to low variance joint estimates, and s ′ is a per-pose score defined in
Equation 6 in [Rogez et al. 2019].
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