Going Deeper with Lean Point Networks

Eric-Tuan Le?

'University College London

Abstract

In this work we introduce Lean Point Networks (LPNs)
to train deeper and more accurate point processing net-
works by relying on three novel point processing blocks that
improve memory consumption, inference time, and accu-
racy: a convolution-type block for point sets that blends
neighborhood information in a memory-efficient manner;
a crosslink block that efficiently shares information across
low- and high-resolution processing branches; and a multi-
resolution point cloud processing block for faster diffusion
of information. By combining these blocks, we design wider
and deeper point-based architectures. We report system-
atic accuracy and memory consumption improvements on
multiple publicly available segmentation tasks by using our
generic modules as drop-in replacements for the blocks of
multiple architectures (PointNet++, DGCNN, SpiderNet,
PointCNN). Code and pretrained models are publicly avail-
able at\geometry.cs.ucl.ac.uk/projects/2020/deepleanpn/,

1. Introduction

Geometry processing has started profiting from applying
deep learning to graphics and 3D shape analysis 6]
[3]], delivering networks that guarantee desirable properties
of point cloud processing, such as permutation-invariance
and quantization-free representation [28] 31, 32]. Despite
these advances, the memory requirements of a majority
of the point processing architectures still impede break-
throughs similar to those made in computer vision.

Directly working with unstructured representations of
3D data (i.e., not residing on a spatial grid), necessitates
re-inventing, for geometry processing, the functionality of
basic image processing blocks, such as convolution opera-
tions, information exchange pathways, and multi-resolution
data flow. Taking a Lagrangian perspective, in order to
avoid quantization or multi-view methods, the pioneering
PointNet architecture demonstrated how to directly
work on point cloud datasets by first lifting individual points
to higher dimensional features (via a shared MLP) and
then performing permutation-invariant local pooling. Point-

Iasonas Kokkinos!+?

Niloy J. Mitra'3

2Ariel Al 3Adobe Research

Net++ [23], by considering local point patches, groups in-
formation within a neighborhood based on Euclidean dis-
tance and then applies PointNet to the individual groups.
This design choice requires explicitly duplicating local
memory information among neighboring points, and poten-
tially compromises performance as the networks go deeper.

500+
—_ mResX
g 450 OO
= mRes
[} 'PN++
E 400:
°
2 350-
2
Z 300-

Deep LPN
250+ PN

2.5 3.0 35 40 45 50 556.0657075
Memory consumption (Gb)

[EEPN++ EELPN B Decp LPN

+3.0 +3.0

+3.4

+2.6

Performance IoU

ShapeNet-Part ScanNet

Dataset Complexity ———3p

Ground Truth PN++ Deep LPN
Segmentation on a faucet

PartNet

Figure 1. Lean Point Networks (LPNs) can achieve higher point
cloud segmentation accuracy while operating at substantially
lower memory and inference time. (Top) Memory footprint and
inference speed of LPN variants introduced in this work compared
to the PointNet++ (PN++) baseline. (Middle) Improvements in
accuracy for three segmentation benchmarks of increasing com-
plexity. On the —most complex— PartNet dataset our deep network
outperforms the shallow PointNet++ baseline by 3.4%, yielding
a 9.7% relative increase. (Bottom) Part Segmentation by Point-
Net++ and Deep LPN.

https://geometry.cs.ucl.ac.uk/projects/2020/deepleanpn/

In particular, the memory and computational demands of
point network blocks (e.g., PointNet++ and many follow-up
architectures) can affect both training speed and, more cru-
cially, inference time. One of the main bottlenecks for such
point networks is their memory-intensive nature, as detailed
in Sec.[3.1] Specifically, the PointNet++ architecture and
its variants replicate point neighborhood information, let-
ting every node carry in its feature vector information about
all of its neighborhood. This results in significant memory
overhead, and limits the number of layers, features and fea-
ture compositions one can compute.

In this work, we enhance such point processing net-
works that replicate local neighborhood information by in-
troducing a set of modules that improve memory footprint
and accuracy, without compromising on inference speed.
We call the resulting architectures Lean Point Networks, to
highlight their lightweight memory budget. We build on
the decreased memory budget to go deeper with point net-
works. As has been witnessed repeatedly in the image do-
main [12} 14} 39], we show that going deep also increases
the prediction accuracy of point networks.

We start in Sec. [3.2] by replacing the grouping operation
used in point cloud processing networks with a low-memory
alternative that is the point cloud processing counterpart of
efficient image processing implementations of convolution.
The resulting ‘point convolution block’ — defined slightly
differently from convolution used in classical signal pro-
cessing — is 67% more memory-efficient and 41% faster
than its PointNet++ counterpart, while exhibiting favorable
training properties due to more effective mixing of informa-
tion across neighborhoods.

We then turn in Sec. to improving the information
flow across layers and scales within point networks through
three techniques: a multi-resolution variant for multi-scale
network which still delivers the multi-scale context but at
a reduced memory and computational cost, residual links,
and a new cross-link block that broadcasts multi-scale infor-
mation across the network branches. By combining these
blocks, we are able to successfully train deeper point net-
works that allow us to leverage upon larger datasets.

In Sec. E] we validate our method on the ShapeNet-Part,
ScanNet and PartNet segmentation benchmarks, reporting
systematic improvements over the PointNet++ baseline. As
shown in Fig. (I, when combined these contributions de-
liver multifold reductions in memory consumption while
improving performance, allowing us in a second stage to
train increasingly wide and deep networks. On PartNet,
the most complex dataset, our deep architecture achieves
a 9.7% relative increase in IoU while decreasing memory
footprint by 57% and inference time by 47%.

Having ablated our design choices on the PointNet++
baseline, in Sec. [f.3] we turn to confirming the generic na-
ture of our blocks. We extend the scope of our experiments

to three additional networks, (i) DGCNN [33], (ii) Spider-
CNN [35]], and (iii) PointCNN [21]] and report systematic
improvements in memory efficiency and performance.

2. Related Work

Learning in Point Clouds. Learning-based approaches
have recently attracted significant attention in the context of
Geometric Data Analysis, with several methods proposed
specifically to handle point cloud data, including Point-
Net [24] and several extensions such as PointNet++ [25]]
and Dynamic Graph CNNs [33]] for shape segmentation and
classification, PCPNet [[10] for normal and curvature esti-
mation, P2P-Net [36] and PU-Net [38]] for cross-domain
point cloud transformation. Alternatively, kernel-based
methods [2} 13} 122} |30] have also been proposed with im-
pressive performance results. Although many alternatives
to PointNet have been proposed [27, 20, 21} [13] 40] to
achieve higher performance, the simplicity and effective-
ness of PointNet and its extension PointNet++ make it pop-
ular for many other tasks [37]].

Taking PointNet++ as our starting point, our work facil-
itates the transfer of network design techniques developed
in computer vision to point cloud processing. In particu-
lar, significant accuracy improvements have been obtained
with respect to the original AlexNet network [[18]] by en-
gineering the scale of the filtering operations [41} 26], the
structure of the computational blocks 29} 134]], and the net-
work’s width and depth [12,[39]. A catalyst for experiment-
ing with a larger space of network architecture, however, is
the reduction of memory consumption - this motivated us to
design lean alternatives to point processing networks. No-
tably, [42] introduce a new operator to improve point cloud
network efficiency, but only focus on increasing the conver-
gence speed by tuning the receptive field. [19] has inves-
tigated how residual/dense connections and dilated convo-
lution could help mitigate vanishing gradient observed for
deep graph convolution networks but without solving mem-
ory limitations, [13]] use Monte Carlo estimators to estimate
local convolution kernels. By contrast our work explicitly
tackles the memory problem with the objective of training
deeper/wider networks and shows that there are clear im-
provements over strong baselines.

Memory-Efficient Networks. The memory complex-
ity of the standard back-propagation implementation grows
linearly with network’s depth as backprop requires retaining
in memory all of the intermediate activations computed dur-
ing the forward pass, since they are required for the gradient
computation in the backward pass.

Several methods bypass this problem by trading off
speed with memory. Checkpointing techniques [5, [9] use
anchor points to free up intermediate computation results,
and re-compute them in the backward pass. This is 1.5x
slower during training, since one performs effectively two

forward passes rather than just one. More importantly, ap-
plying this technique is easy for chain-structured graphs,
e.g., recursive networks [9]] but is not as easy for general Di-
rected Acyclic Graphs, such as U-Nets, or multi-scale net-
works like PointNet++. One needs to manually identify the
graph components, making it cumbersome to experiment
with diverse variations of architectures.

Reversible Residual Networks (RevNets) [8] limit the
computational block to come in a particular, invertible form
of residual network. This is also 1.5x slower during train-
ing, but alleviates the need for anchor points altogether. Un-
fortunately, it is unclear what is the point cloud counterpart
of invertible blocks.

We propose generic blocks to reduce the memory foot-
print inspired from multi-resolution processing and efficient
implementations of the convolution operation in computer
vision. As we show in Sec. 4.3} our blocks can be used as
drop-in replacements in generic point processing architec-
tures (PointNet++, DGCNN, SpiderNet, PointCNN) with-
out any additional network design effort.

3. Method

We start with a brief introduction of the PointNet++ net-
work, which serves as an example point network baseline.
We then introduce our modules and explain how they de-
crease memory footprint and improve information flow.

3.1. PointNet and PointNet++ Architectures

PointNet++ [25] has been proposed as a method of
augmenting the basic PointNet architecture with a group-
ing operation. As shown in Fig. f[a), grouping is im-
plemented through a ‘neighborhood lookup’, where each
point p; looks up its k-nearest neighbors and stacks them
to get a point set, say P}Vk If each point comes with a D-
dimensional feature vector, the result of this process is a ten-
sor T =[v vy v, k] |of size NxDx(K+1).
Within the PointNet modules, every vector of this matrix is
processed separately by a Multi-Layer-Perceptron that im-

plements a function MLP : RP — RP /, while at a later
point a max-pooling operation over the K neighbors of ev-
ery point delivers a slim, N x D' matrix.

When training a network every layer constructs and re-
tains a matrix like 7" in memory, so that it can be used in the
backward pass to update the MLP parameters, and send gra-
dients to earlier layers. While demonstrated to be extremely
effective, this design of PointNet++ has two main shortcom-
ings: first, because of explicitly carrying around k-nearest
neighbor information for each point, the network layers are
memory intensive; and second, being reliant on PointNet, it
also delays transmission of global information until the last,
max-pooling stage where the results of decoupled MLPs are
combined. Many subsequent variants of PointNet++ suffer

from similar memory and information flow limitations. As
we describe now, these shortcomings are alleviated, by our
convolution-type point processing layer.

3.2. convPN: a convolution-type PointNet layer

We propose a novel convolution-type PointNet layer
(convPN), that is inspired from efficient implementations
of convolution. Standard convolution operates in two steps:
(i) neighborhood exposure and (ii) matrix multiplication.
Our convPN block follows similar steps, as shown in Fig.
but the weight matrix blocks treating different neighbors are
tied, so as to ensure permutation invariance.

In more detail, standard 2D image convolution amounts
to forming a K? tensor in memory when performing K x
K filtering and then implementing a convolution as ma-
trix multiplication. This amounts to the im2col opera-
tion used to implement convolutions with General Matrix-
Matrix Multiplication (GEMM) [[15]]. In point clouds the
nearest neighbor information provides us with the counter-
part to the K x K neighborhood.

Based on this observation we propose to use the strategy
used in memory-efficient implementations of image convo-
lutions for deep learning: we free the memory from a layer
as soon as the forward pass computes its output, rather than
maintaining the matrix in memory. In the backward pass we
reconstruct the matrix on the fly from the outputs of the pre-
vious layer. We perform the required gradient computations
and then return the GPU memory resources.

As shown in Fig. [3| we gain further efficiency by re-
placing the MLPs of PointNet++ by a sequence of SLP-
Pooling modules. This allows us to further reduce memory
consumption, saving the layer activations only through the
pooled features while at the same time increasing the fre-
quency at which neighbors share information.

As detailed in the Supplemental Material, a careful im-
plementation of our convolution-type architecture shortens,
on average, the time spent for the forward pass and the back-
ward pass by 41% and 68%, respectively, while resulting in
a drastic reduction in memory consumption.

For a network with L layers, the memory consumption
of the baseline PointNet++ layer grows as L X (N x D x K),
while in our case memory consumption grows as L x (N X
D)+ (N x D x K), where the term, L x (N x D) accounts
for the memory required to store the layer activations, while
the second term N x D x K is the per-layer memory con-
sumption of a single neighborhood convolution layer. As
L grows larger, this results in a K-fold drop, shown on
Fig. 5| This reduction opens up the possibility of learning
much deeper networks, since memory demands now grow
substantially more slowly in depth. With minor, dataset-
dependent, fluctuations, the memory footprint of our con-
volution type architecture is on average 67% lower than the
PointNet++ baseline, while doubling the number of layers

Image Neighborhood 2D Convolution
Image Features

Features Weight matrix
_w cxkxk e
SN =
2D Convolution ,,‘S N = _
N Im2Col - =
= X
BN -3 .
L s n b
k e
- i ! ‘ FITTTITTCITS
- C > =
« ¢ > - I A I c \\k ,
SNELETN, exk
: e e ek ~
Point Convolution . o LT . ‘ e
n _~~ Grouping L] Stacking - .
counterpart = |H —> . x + Shared SLP
N :
. Point Cloud Neighborhood Stacked Point Cloud . .
Point Cloud Features Features Neighborhood Features SLP Weight matrix

Figure 2. Analogy between 2D convolution and its point cloud counterpart. In both cases, the layer operates in two steps: (i) neighborhood
exposure and (i) matrix multiplication. 2D image convolution amounts to forming a K? tensor in memory when performing K x K
filtering and then implementing a convolution as matrix multiplication.

MLP
7777777777777777777777777 .
ol N 3 I N
+
. nxec 777\ | & [] N R I T ax "
PoinNet++ module ' KNN ! Hstp S Jgp T Jgpl S Llpgel
- [I | C o —a e
,,,,,,,,,,,,,,,,,,,,,,,,, - O%
", s,
% %
B 7Igo£(u7p:SI:P-7Pgoliinigi B B 7Igol(u7p:SI:P:PgoI7inigi B lookup-SLP-Pooling
jr==1 Fr— =1 r——n- ! ; qr——a r— = = =1 | RN e GoEmE SuEml |, "z
convPN module —""““ ! kNN ! SLP ! pool | " | kNN > SLP ' pool | — "X | kNN > SLP -~ pool | "~
IR R VA T Y I U R S I
777777777777777 %o% e e ~%o% e e ‘%o@>
5, O N o
% % % % % %

Figure 3. Comparison of a PointNet++ module with our convPN module. The convPN module replaces the MLP with its pooling layer by
a sequence of SLP-Pooling modules which has two benefits (i) memory savings as the layer activations are saved only through the pooled
features and (ii) better information flow as it increases the frequency at which neighbors share information.

comes with a memory overhead of 2.7%. cloud. In the coordinates of the original point cloud this
amounts to increasing the effective grouping area, but it now
3.3. Improving Information Flow comes with a much smaller memory budget. We observe a

58% decrease in memory footprint on average on the three
tested datasets. Please refer to in Supplemental for an illus-
tration of the difference between both types of processing.

We now turn to methods for efficient information prop-
agation through point networks. As has been repeatedly
shown in computer vision, this can drastically impact the

behavior of the network during training. Our experiments (b) Residual Links. We use the standard Residual Net-
indicate that this is also the case for point processing. work architecture [12], which helps to train deep networks

(a) Multi-Resolution vs Multi-Scale Processing. reliably. Residual networks change the network’s connec-

Shape features can benefit from both local, fine-grained tivity to improve gradient flow during training: identity con-
information and global, semantic-level context; their fusion nections provide early network layers with access to undis-
can easily boost the discriminative power of the resulting torted versions of the loss gradient, effectively mitigating
features. For this we propose to extract neighborhoods of the vanishing gradient problem. As our results in Sec. [

fixed size in downsampled versions of the original point show, this allows us to train deeper networks.

Network Layers . N- . S ISR A
— — 1"2" '>" i'-f “4L pool JFl — 4"];» |1 KNN 1>} SLP b 14 SLP b4 pool FI" -]—»
| | - | P P) |SEER SO
| L
777777777777 o - U PR L . P
I N - ! | oo i |1 VA I 1 [remn | ! L O Ty
| 15 =3 '@H B "“"4 o "4P°°‘—' ' i(4)— 4kNN|>4 SLP i-'xLink| i SLP b1 pool —i — 1
nXxecl, PPN HInxc 1 L B el Rt | | | L el e L 3 1 |
“ kNN == D N D - I N O
| ! ! D Qe—afromalr-=a ! I | oA ! | 1 |
PN) I [I - r--a i (A
'L iiiiiiiii PN b - JL> 4kﬁN |»—| SLP l»—l pool — _ _ | I L | Ly knn |>-—| SLP b 1 1i sLP -1 pool H.___J
(a) PointNet++ (PN++) (b) mRes (c) mResX
"""] kNN»SLP*pOOIJ——;__ﬂH S = = — —
| | I I | ﬁ I'_> I |
l I I I I |
I | I 1 I 1 e o ° 1 |
— ——— 1 1 ! ! | 1
: :] l |U| ! ! =z =z P4 =z |U|
| i I kNN F SLP «»I pool 1 ! | i e HEHg T !
L I 1 T | |] c c c c | T !
| ! o o o o
ID | 1 1 I 1 v] v] V] V] 1 1
I | I I |D| I 1
i == ———l 1 l I] 1 |
[k*kNNrSLPmpool ! : L — — !

(d) convPN (e) Stack of convPN layers

Figure 4. The standard PN++ layer in (a) amounts to the composition of a k-Nearest Neighbor (kNN)-based lookup and a PointNet element.
In (b) we propose to combine parallel PointNet++ blocks in a multi-resolution architecture (D and U stand for down- and up-sampling
operations), using multiple Single Layer Perceptrons (SLPs) and in (c) allow information to flow across branches of different resolutions
through a cross-link element ("xLink’). In (d) we propose to turn the lookup-SLP-pooling cascade into a low-memory counterpart by
removing the kNN elements from memory once computed; we also introduce residual links, improving the gradient flow. In (e) we stack

the green box in (d) to grow in depth and build our deep architecture.

161

14
- Mem. Budget
=)

Sio

Hightes e
Mid-res - _ _
14

12
Nb layers

Figure 5. Evolution of memory consumption as the number of lay-
ers increases for PointNet++ and LPN (convolution block counter-
part) on ShapeNet-Part. Doubling the number of layers for LPN
results only in an increase in memory by +2.3% and +16.8% for
mid- and high- resolution respectively, which favorably compares
to the +72% and +125% increases for PointNet++.

(¢) Cross Links. Further, we use Cross-Resolution
Links to better propagate information in the network dur-
ing training. We draw inspiration from the Multi-Grid
Networks [16], Multiresolution Tree Networks [7], Hy-
percolumns [11]]; and allow layers that reside in differ-
ent resolution branches to communicate with each other,
thereby exchanging low-, mid-, and high-resolution infor-

o)
== D
— >
| !
A‘XLink‘» &
1 Ly %
cross link &7
©

Figure 6. Cross-link module to connect across resolutions.

mation throughout the network processing, rather than fus-
ing multi-resolution information at the end of each block.

Cross-links broadcast information across resolutions as
shown in Fig.[6] Note that unlike [7], an MLP transforms
the output of one branch to the right output dimensional-
ity so that it can be combined with the output of another
branch. Each resolution branch can focus on its own rep-
resentation and the MLPs will be in charge of making the
translation between them. Taking in particular the case of a
high-resolution branch communicating its outputs to a mid-
resolution branch, we have N x D feature vectors at the
output of a lookup-SLP-pooling block cascade, which need
to be communicated to the N/2 x D™ vectors of the mid-
resolution branch. We first downsample the points, going

from N to N/2 points, and then use an MLP that trans-
forms the vectors to the target dimensionality. Conversely,
when going from low- to higher dimensions we first trans-
form the points to the right dimensionality and then upsam-
ple them. We have experimented with both concatenating
and summing multi-resolution features and have observed
that summation behaves systematically better in terms of
both training speed and test performance.

4. Evaluation

We start by defining our tasks and metrics and then turn
to validating our two main contributions to model accuracy,
namely better network training through improved network
flow in Sec.[d.1] and going deeper through memory-efficient
processing in Sec.[4.2] We then turn to validating the merit
of our modules when used in tandem with a broad array of
state-of-the-art architectures in Sec. and finally provide
a thorough ablation of the impact of our contributions on
aspects complementary to accuracy, namely parameter size,
memory, and efficiency in Sec. #.4]

Dataset and evaluation measures. Our modules can
easily be applied to any point cloud related tasks, such as
classification, however, we focus here on evaluating our
modules on the point cloud segmentation task on three dif-
ferent datasets as it is a more challenging task. The datasets
consist of either 3D CAD models or real-world scans. We
quantify the complexity of each dataset based on (i) the
number of training samples, (ii) the homogeneity of the
samples and (iii) the granularity of the segmentation task.
Note that a network trained on a bigger and diverse dataset
would be less prone to overfitting - as such we can draw
more informative conclusions from more complex datasets.
We order the datasets by increasing complexity: ShapeNet-
Part [4], ScanNet [[6] and PartNet [23] for fine-grained seg-
mentation. By its size (24,506 samples) and its granularity
(251 labeled parts), PartNet is the most complex dataset.

To have a fair comparison (memory, speed, accuracy),
we re-implemented all the models in Pytorch and consis-
tently compared the vanilla network architectures and our
memory-efficient version. We report the performance of
networks using their last saved checkpoint (i.e. when train-
ing converges), instead of the common (but clearly flawed)
practice of using the checkpoint that yields best perfor-
mance on the test set. These two factors can lead to small
differences from the originally reported performances.

We use two different metrics to report the Intersection
over Union (IoU): (i) the mean Intersection over Union
(mloU) and (ii) the part Intersection over Union (ploU).
Please refer to Supplemental for further details.

4.1. Effect of improved information flow

We report the performance of our variations for Point-
Net++ on the Shapenet-Part, ScanNet and PartNet datasets

Table 1. Performance of our modules compared to PointNet++
baseline. The impact of our modules becomes most prominent
as the dataset complexity grows. On PartNet our Deep LPN net-
work increases ploU by 9.7% over PointNet++, outperforming its
shallow counterpart by +2.1%.

ShapeNet-Part ScanNet PartNet

(13,998 samp.) (1,201 samp.) (17,119 samp.)

mloU (%) Vox. Acc. (%) ploU (%) ploU (%)
PN++ | 84.60 (+0.0%) | 80.5 (+0.0%) 24 (+0.0%) 35.2 (+0.0%)
mRes | 85.47 (+1.0%) | 79.4 (-1.4%) 22 (-8.3%) 37.2 (+5.7%)
mResX | 85.42 (+1.0%) | 79.5 (-1.2%) 22 (-8.3%) 37.5 (+6.5%)

LPN | 85.65 (+1.2%)
Deep LPN | 85.66 (+1.3%)

83.2 (+3.4%) 27 (+12.5%) | 37.8 (+7.4%)
822 (+2.1%) 27 (+12.5%) | 38.6 (+9.7%)

(Table [T). Our lean and deep architectures can be easily
deployed on large and complex datasets. Hence, for Part-
Net, we choose to train on the full dataset all at once on a
segmentation task across the 17 classes instead of having to
train a separate network for each category as in [23]].

Our architectures substantially improve the memory ef-
ficiency of the PointNet++ baseline while also delivering
an increase in performance for more complex datasets (see
Fig. [I). Indeed, as the data complexity grows, having
efficient information flow has a larger influence on the
network performance. On PartNet, the spread between
our architectures and the vanilla PointNet++ becomes sig-
nificantly high: our multiresolution (mRes) network in-
creases relative performance by +5.7% over PointNet++
and this gain reaches +6.5% with cross-links (mResX).
Our convolution-type network (LPN) outperforms other ar-
chitectures when dataset complexity increases (+3.4% on
ScanNet and +7.4% on PartNet) by more efficiently mixing
information across neighbours.

4.2. Improvement of accuracy by going deeper

The memory savings introduced in Sec. give the op-
portunity to design deeper networks. Naively increasing
network depth can harm performance [12]. Instead, we
use residual connections to improve convergence for our
deep network. The architecture, detailed in the Supplemen-
tal material, consists in doubling the number of layers in
the encoding part. While keeping the impact on efficiency
very small (+6.3% on inference time on average and +3.6%
on memory consumption at most compared to the shallow
LPN), the performance improved (see Tablem). On PartNet,
this margin reaches +2.1% over the shallow LPN and +9.7%
over the vanilla PointNet++. Note the low growth of mem-
ory as a function of depth, shown in Fig.[5] As shown in
Fig.[/| having a deeper network improves the segmentation
quality at the boundaries between parts. In contrast, naively
increasing the number of encoding layers from 9 to 15 in
PointNet++ leads only to a small increase in performance
IoU from 84.60% to 84.66%.

In Table 2] we compare against Deep GCN [[19] in terms

Table 2. Performance of our deepConPN network compared to Deep GCN (ResGCN-28) and related methods on S3DIS based on a 6-fold
validation process. The difference in performance observed on each class can be explained by the different approaches networks have
for point convolution. Our deep network clearly outperforms PointNet++ baseline by a spread of +6.8% for mloU. We achieve similar

performance compared to Deep GCN while relying on a weaker baseline (PointNet++ against DGCNN)

Method | OA mlIOU | ceiling floor wall beam column window door table chair sofa bookcase board clutter
MS+CU | 79.2 47.8 88.6 958 673 369 249 48.6 523 519 451 10.6 36.8 247 375
G+RCU | 81.1 49.7 90.3 921 679 447 242 523 512 581 474 69 39.0 300 419

3DRNN+CF | 86.9 56.3 929 938 73.1 425 259 476 592 604 66.7 24.8 57.0 36.7 51.6
DGCNN | 84.1 56.1 - - - - - - - - - - - - -

ResGCN-28 | 85.9 60.0 931 953 782 339 374 561 68.2 649 61.0 34.6 51.5 51.1 544

PointNet | 78.5 47.6 88.0 887 693 424 23.1 475 51.6 541 420 9.6 382 294 352

PointNet++ | - 53.2 90.2 91.7 73.1 427 21.2 49.7 423 627 59.0 19.6 45.8 482 456

Deep LPN | 85.7 60.0 91.0 956 76.1 503 259 55.1 56.8 663 743 258 54.0 523 553

Ground Truth PointNet++ Deep LPN Ground Truth PointNet++ Deep LPN
Bed Door

Figure 7. Segmentation prediction for both PointNet++ and Deep LPN networks compared to the ground truth. While PointNet++ struggles
to detect accurately the boundaries between different parts, ours performs a much finer segmentation in those frontier areas.

of the overall accuracy and the mean IoU on the S3DIS
dataset [[1] by following the same 6-fold evaluation process.
We attain similar performance to Deep GCN, while relying
on our generic memory-efficient network blocks and while
based on a weaker baseline compared to Deep GCN (i.e.,
DGCNN). Moreover, as Deep GCN is not designed to tackle
the efficiency issue in Point Networks, our network wins on
all counts and successfully reduces both the memory (more
than 74%) and the speed (-48% and -89% for the inference
and the backward speed respectively). As we show in the
following section, these blocks come with the advantage of
being applicable to many other point processing networks.

4.3. Evaluation on more architectures

We have introduced building blocks for point process-
ing networks based on two key ideas, (i) a memory effi-
cient convolution and (ii) improved information flow. Our
blocks make it really efficient to capture, process and dif-
fuse information in a point neighbourhood. Diffusing infor-
mation across neighborhood is the main behavior that most
networks, if not all, share. We validate the generality of the
proposed modular blocks in the context of other point-based
learning setups, as shown in Table 3] Each of our macro-
blocks can be stacked together, extended into a deeper block
by duplicating the green boxes (see Figure [) or even be
modified by changing one of its components by another.
We test our framework on three additional networks among
the recent approaches, (i) Dynamic Graph CNN [33]], (ii)
PointCNN [21]] and (iii) SpiderCNN [35]]. These networks
involve a diverse set of point convolution approaches; these

experiments allow us to assess the generic nature of our
modular blocks, and their value as drop-in replacements for
existing layers.

All three of the networks make extensive use of memory
which is a bottleneck to depth. We implant our modules di-
rectly in the original networks, making, when needed, some
approximations from the initial architecture (see Supple-
mental). We report the performance of each network with
our lean counterpart on two metrics: (i) memory footprint
and (ii) accuracy in Table[3] Our lean counterparts consis-
tently improve both the accuracy (from +0.4% up to +8.0%)
and the memory consumption (from -19% up to -69%).

Our modular blocks can thus be applied to a wide range
of state-of-the-art networks and improve significantly their
memory consumption while having a positive impact on
performance.

4.4. Ablation study

In this section we report our extensive experiments to as-
sess the importance of each block of our network architec-
tures. Our lean structure allows us to adjust the network ar-
chitectures by increasing its complexity, either by (i) adding
extra connections or by (ii) increasing the depth. We ana-
lyze our networks along four axes: (i) the performance (IoU
or accuracy) (Table m), (ii) the memory footprint, (iii) the
inference time and (iv) the backward time. Our main exper-
imental findings regarding network efficiency are reported
in Table [4] and ablate the impact of our proposed design
choices for point processing networks.

Memory-efficient Convolutions: As described in

Table 3. Performance of our blocks on three different architectures (DGCNN, PointCNN and SpiderCNN) on three datasets using two
different metrics: (i) memory consumption in Gb and (ii) performance in % (mloU for ShapeNet-Part, Vox. Acc. for ScanNet and ploU
for PartNet). Our lean counterparts improve significantly both the performance (up to +8.0%) and the memory consumption (up to -69%).

DGCNN PointCNN SCNN
ShapeNet-P ScanNet PartNet ShapeNet-P ScanNet PartNet ShapeNet-P ScanNet PartNet
Vanilla | 2.62 (+0%) 7.03 (+0%) 9.50 (+0%) 4.54 (+0%) 5.18 (+0%) 6.83 (+0%) 1.09 (+0%) 4.33 (+0%) 5.21 (+0%)
Mem. | 1 ean | 0.81 (-69%) 3.99 (-43%) 5.77(-39%) | 1.98 (-56%) 3.93 (-24%) 5.55(-19%) | 0.79 (-28%) 3.25(-25%) 3.33 (-36%)
Vanilla | 82.59 (+0.0%) 74.5 (+0.0%) 20.5 (+0.0%) | 83.60 (+0.0%) 77.2 (+0.0%) 25.0 (+0.0%) | 79.86 (+0.0%) 72.9 (+0.0%) 17.9 (+0.0%)
Perf. | [can |83.32 (+0.9%) 75.0 (+0.7%) 21.9 (+6.8%) | 84.45 (+1.0%) 80.1 (+3.8%) 27.0 (+8.0%) | 81.61 (+2.2%) 73.2 (+0.4%) 18.4 (+2.8%)

Table 4. Efficiency of our network architectures measured with a batch size of 8 samples on a Nvidia GTX 2080Ti GPU. All of our lean
architectures allow to save a substantial amount of memory on GPU wrt. the PointNet++ baseline from 58% with mRes to a 67% decrease
with LPN. This latter convolution-type architecture wins on all counts, decreasing both inference time (-41%) and the length of backward
pass (-68%) by a large spread. Starting from this architecture, the marginal cost of going deep is extremely low: doubling the number of
layers in the encoding part of the network increases inference time by 6.3% on average and the memory consumption by only 3.6% at most

compared to LPN. Please refer to Supplemental for absolute values.

Parameters (M) Memory Footprint (Gb) Inference Time (ms) Length Backward pass (ms)
ShapeNet-Part ScanNet PartNet | ShapeNet-Part ScanNet PartNet | ShapeNet-Part ScanNet PartNet | ShapeNet-Part ScanNet PartNet
PointNet++ +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0%
mRes -17.0% -17.6% -16.6% -69.3% -56.5% -47.6% +14.8% +59.2% -19.4% -68.8% -53.8% -63.2%
mResX -10.6% -10.7% -10.1% -65.0% -532% -46.3% +28.2% +60.9% -12.5% -29.5% +0.0% -25.4%
LPN +13.8% +13.4% +12.6% -75.7% -66.6% -57.9% -45.6 % -30.3% -47.9% -82.7% -42.3% -78.9%
Deep LPN +54.3% +54.0% +50.8% -79.1% -65.4% -57.0% -40.4% -25.6% -46.5% -78.6% -11.5% -72.4%

Sec. [3.2] our leanest architeture is equivalent to constrain-
ing each PointNet unit to be composed of a single layer
network, and turning its operation into a memory-efficient
block by removing intermediate activations from memory.
In order to get a network of similar size, multiple such units
are stacked to reach the same number of layers as the orig-
inal network. Our convolution-type network wins on all
counts, both on performance and efficiency. Indeed, the loU
is increased by 3.4% on ScanNet and 7.4% on PartNet com-
pared to PointNet++ baseline. Regarding its efficiency, the
memory footprint is decreased by 67% on average while
decreasing both inference time (-41%) and the length of the
backward pass (-68%). These improvements in speed can
be seen as the consequence of processing most computa-
tions on flattened tensors and thus reducing drastically the
complexity compared to PointNet++ baseline.

Multi-Resolution: Processing different resolutions at
the same stage of a network has been shown to perform well
in shallow networks. Indeed, mixing information at differ-
ent resolutions helps to capture complex features early in
the network. We adopt that approach to design our mRes
architecture. Switching from a PointNet++ architecture to
a multi-resolution setting increases the IoU by 1.0% on
ShapeNet-Part and 5.7% on PartNet. More crucially, this in-
crease in performance come with more efficiency. Although
the inference time is longer (18% longer on average) due to
the extra downsampling and upsampling operations, the ar-
chitecture is much leaner and reduces memory footprint by
58%. Training is quicker though due to a 62% faster back-
ward pass.

Cross-links: Information streams at different resolu-
tions are processed separately and can be seen as comple-
mentary. To leverage this synergy, the network is provided
with additional links connecting neighborhood resolutions.
We experiment on the impact of those cross-resolution links
to check their effect on the optimization. At the price of a
small impact on memory efficiency (+8% wrt. mRes) and
speed (+7% on inference time wrt. mRes), the performance
can be improved on PartNet, the most complex dataset, with
these extra-links by 0.8%.

5. Conclusion

We have introduced new generic building blocks for
point processing networks, that exhibit favorable memory,
computation, and optimization properties when compared
to the current counterparts of state-of-the-art point process-
ing networks. Based on PointNet++, our lean architec-
ture LPN wins on all counts, memory efficiency (-67% wrt.
PointNet++) and speed (-41% and -68% on inference time
and length of backward pass). Its deep counterpart has a
marginal cost in terms of efficiency and achieves the best
IoU on PartNet (+9.7% over PointNet++). Those generic
blocks exhibit similar performance on all of the additionally
tested architectures producing significantly leaner networks
(up to -69%) and increase in IoU (up to +8.0%). Based
on our experiments, we anticipate that adding these com-
ponents to the armament of the deep geometry processing
community will allow researchers to train the next gener-
ation of point processing networks by leveraging upon the
advent of larger shape datasets [23.[17].

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, loan-
nis Brilakis, Martin Fischer, and Silvio Savarese. 3d seman-
tic parsing of large-scale indoor spaces. In Proceedings of
the IEEE International Conference on Computer Vision and
Pattern Recognition, 2016.

Matan Atzmon, Haggai Maron, and Yaron Lipman. Point
convolutional neural networks by extension operators. ACM
Trans. Graph., 37(4):71:1-71:12, July 2018.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niey/iiner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. 09 2017.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015.

Tianqgi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.
Training deep nets with sublinear memory cost. CoRR,
abs/1604.06174, 2016.

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Niener. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017.

Matheus Gadelha, Rui Wang, and Subhransu Maji. Multires-
olution tree networks for 3d point cloud processing. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 103-118, 2018.

Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and
Roger B. Grosse. The reversible residual network:
Backpropagation without storing activations. CoRR,
abs/1707.04585, 2017.

Audrunas Gruslys, Remi Munos, Ivo Danihelka, Marc Lanc-
tot, and Alex Graves. Memory-efficient backpropagation
through time. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 29, pages 4125-4133. Curran
Associates, Inc., 2016.

Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and
Niloy J. Mitra. PCPNet: Learning local shape properties
from raw point clouds. CGF, 37(2):75-85, 2018.

Bharath Hariharan, Pablo Andrés Arbelaez, Ross B. Gir-
shick, and Jitendra Malik. Hypercolumns for object segmen-
tation and fine-grained localization. CoRR, abs/1411.5752,
2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. 2016.

P. Hermosilla, T. Ritschel, P-P Vazquez, A. Vinacua, and
T. Ropinski. Monte carlo convolution for learning on non-
uniformly sampled point clouds. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia 2018), 37(6),
2018.

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely
connected convolutional networks. CoRR, abs/1608.06993,
2016.

Yangqing Jia. Learning Semantic Image Representations at a
Large Scale. PhD thesis, University of California, Berkeley,
USA, 2014.

Tsung-Wei Ke, Michael Maire, and Stella X. Yu. Neural
multigrid. CoRR, abs/1611.07661, 2016.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. ABC: A big CAD model
dataset for geometric deep learning. CoRR, abs/1812.06216,
2018.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2013.

Guohao Li, Matthias Miiller, Ali Thabet, and Bernard
Ghanem. Deepgcens: Can gens go as deep as cnns?, 2019.
Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-
organizing network for point cloud analysis. pages 9397—
9406, 2018.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. 2018.

Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. CoRR, 2019.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna
Tripathi, Leonidas J. Guibas, and Hao Su. Partnet: A large-
scale benchmark for fine-grained and hierarchical part-level
3d object understanding. CoRR, abs/1812.02713, 2018.
Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. CVPR, 1(2):4, 2017.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NIPS, pages 5099-5108,
2017.

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. 2015.
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,
Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.
Splatnet: Sparse lattice networks for point cloud processing.
pages 2530-2539, 2018.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and
Erik G. Learned-Miller. Multi-view convolutional neural
networks for 3d shape recognition. In Proc. ICCV, 2015.
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. CoRR, abs/1409.4842, 2014.

Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, Francois Goulette, and Leonidas J.
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. CoRR, 2019.

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-CNN: Octree-based Convolutional Neu-

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

ral Networks for 3D Shape Analysis. ACM Transactions on
Graphics (SIGGRAPH), 36(4), 2017.

Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong.
Adaptive O-CNN: A Patch-based Deep Representation of 3D
Shapes. ACM Transactions on Graphics (SIGGRAPH Asia),
37(6), 2018.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. arXiv preprint
arXiv:1801.07829, 2018.

Saining Xie, Ross B. Girshick, Piotr Dolldr, Zhuowen Tu,
and Kaiming He. Aggregated residual transformations for
deep neural networks. CoRR, abs/1611.05431, 2016.

Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 87-102, 2018.

Kangxue Yin, Hui Huang, Daniel Cohen-Or, and Hao Zhang.
P2p-net: Bidirectional point displacement net for shape
transform. ACM TOG, 37(4):152:1-152:13, July 2018.
Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Ec-net: an edge-aware point set consoli-
dation network. pages 386-402, 2018.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-net: Point cloud upsampling network.
In CVPR, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. CoRR, abs/1605.07146, 2016.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Ruslan R Salakhutdinov, and Alexander J
Smola. Deep sets. 2017.

Matthew D. Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. 2014.

Zhiyuan Zhang, Binh-Son Hua, and Sai-Kit Yeung. Shell-
net: Efficient point cloud convolutional neural networks us-
ing concentric shells statistics. In International Conference
on Computer Vision (ICCV), 2019.

Supplementary Material - Going Deeper with Lean Point Networks

Eric-Tuan Le?

'University College London

1. Details on evaluation results
1.1. Datasets

We evaluate our networks on the point cloud segmenta-
tion task on three different datasets, ordered by increasing
complexity:

e ShapeNet-Part [1]: CAD models of 16 different object
categories composed of 50 labeled parts. The dataset
provides 13,998 samples for training and 2, 874 sam-
ples for evaluation. Point segmentation performance is
assessed using the mean point Intersection over Union
(mloU).

e ScanNet [2]: Scans of real 3D scenes (scanned and
reconstructed indoor scenes) composed of 21 semantic
parts. The dataset provides 1, 201 samples for training
and 312 samples for evaluation. We follow the same
protocol as in [5] and report both the voxel accuracy
and the part Intersection over Union (ploU).

e PartNet [4]: Large collection of CAD models of 17
object categories composed of 251 labeled parts. The
dataset provides 17,119 samples for training, 2,492
for validation and 4, 895 for evaluation. The dataset
provides a benchmark for three different tasks: fine-
grained semantic segmentation, hierarchical semantic
segmentation and instance segmentation. We report on
the first task to evaluate our networks on a more chal-
lenging segmentation task using the same part Inter-
section over Union (pIoU) as in ScanNet.

1.2. Evaluation metrics

To report our segmentation results, we use two versions
of the Intersection over Union metric:

e mloU: To get the per sample mean-loU, the IoU is
first computed for each part belonging to the given ob-
ject category, whether or not the part is in the sample.
Then, those values are averaged across the parts. If
a part is neither predicted nor in the ground truth, the
IoU of the part is set to 1 to avoid this indefinite form.

Iasonas Kokkinos!+?

Niloy J. Mitral?

2Ariel Al 3Adobe Research

The mloU obtained for each sample is then averaged
to get the final score as,

> X UG

s€samples ' PAS pi P

mloU =

Nsamples

with Ngmples the number of samples in the dataset,
cat(s), nf,itr(lz) and Peyys) the object category where s be-
longs, the number of parts in this category and the sets
of its parts respectively. IoU(p*) is the IoU of part p*

in sample s.

e ploU: The part-IoU is computed differently. The IoU
per part is first computed over the whole dataset and
then, the values obtained are averaged across the parts
as,

ZsEsamp]es IS (pi)

ploU = -
Mparts pEparts ZsEsamples Us (p)

With 7 the number of parts in the dataset, I, (p*) and
Us(p*) the intersection and union for samples s on part
p' respectively.

To take into account the randomness of point cloud sam-
pling when performing coarsening, we use the average of
‘N’ forward passes to decide on the final segmentation dur-
ing evaluation when relevant.

Table 1. Summary of the impact of our module implants in five
different networks on ShapeNet-Part. The impact is measured by
four metrics: (i) memory footprint, (ii) IoU, (iii) inference time
and (iv) backward time. With all tested architectures, our lean
modules decrease the memory footprint while allowing small im-
provements in terms of IoU. The impact on inference time depends
on the choice of the network but can range from positive impact to
a small slowdown.

Memory IoU Inference | Backward
PN++ | -76% +1.2% -46 % -83%
DGCNN | -69% +0.9 % -22% -49%
SCNN | -28% +2.2% +27% +193%
PointCNN | -56% +1.0% +35% +71%

Table 2. Per-category performance mloU on ShapeNet-Part (Top) and ploU on PartNet (Bottom) based on a training on each whole dataset
all at once. On ShapeNet-Part, all of our network architectures outperform PointNet++ baseline by at least +1.0%. Our deep architecture
still improves the performance of its shallower counterpart by a small margin of +0.1%. On PartNet, the fine details of the segmentation
and the high number of points to process make the training much more complex than previous datasets. PointNet++, here, fails to capture
enough features to segment the objects properly. Our different architectures outperform PointNet++ with a spread of at least +2.0% (+5.7%
increase). With this more complex dataset, deeper networks become significantly better: our Deep LPN network achieves to increase ploU
by +9.7% over PointNet++ baseline, outperforming its shallow counterpart by +2.1%.

Tot/Av. Aero Bag Cap Car Chair Ear Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table
No. Samples| 13998 2349 62 44 740 3053 55 628 312 1261 367 151 146 234 54 121 4421
PN++| 84.60 827 76.8 84.4 78.7 90.5 723 905 863 829 960 724 943 805 628 763 81.2
mRes| 8547 83.7 77.1 854 79.6 91.2 734 91.6 881 841 956 751 951 814 597 769 82.1
mResX | 8542 83.1 77.0 84.8 79.7 91.0 67.8 915 880 841 957 746 954 824 571 7T77.0 823
LPN| 85.65 833 77.2 87.8 80.6 91.1 72.0 91.8 88.1 846 958 758 951 83.6 607 750 824
Deep LPN| 85.66 82.8 79.2 82.7 80.9 91.1 754 916 881 849 953 731 951 833 61.6 77.7 82.6
Tot./Av. Bed Bott Chair Clock Dish Disp Door Ear Fauc Knife Lamp Micro Frid Storage Table Trash Vase
No. samples | 17119 133 315 4489 406 111 633 149 147 435 221 1554 133 136 1588 5707 221 741
PN++| 352 30.1 32.0 39.5 303 29.1 814 314 354 466 37.1 251 315 326 405 349 33.0 563
mRes| 372 29.6 327 40.0 343 299 80.2 35.0 50.0 56.5 41.0 265 339 351 410 354 353 577
mResX | 37.5 32.0 379 404 302 31.8 809 340 43.0 543 426 268 33.1 31.8 412 36.5 408 572
LPN| 37.8 33.2 40.7 40.8 358 319 812 33.6 484 543 41.8 268 310 322 406 354 411 572
Deep LPN| 38.6 295 42.1 41.8 347 332 81.6 348 49.6 53.0 44.8 284 335 323 41.1 363 43.1 578

1.3. Summary of the impact of our module

We experiment on four different networks that all exhibit
diverse approach to point operation: (i) PointNet++ [0],
(i) Dynamic Graph CNN [7], (iii) SpiderCNN [8], (iv)
PointCNN [3] . As detailed in Table 1, our lean blocks, be-
ing modular and generic, can not only increase the memory
efficiency of that wide range of networks but can as well im-
prove their accuracy. The effect of our blocks on inference
time does vary with the type of network, from a positive
impact to a small slowdown.

1.4. Detailed results from the paper

The following section provides more details on the eval-
uation experiments introduced in the paper. We present the
per-class IoU on both ShapeNet-Part and PartNet datasets
in Table 2 for each of the PointNet++ based architecture.
Due to the high number of points per sample and the level
of details of the segmentation, PartNet can be seen as much
more complex than ShapeNet-Part.

On PartNet, the spread between an architecture with an
improved information flow and a vanilla one becomes sig-
nificant. Our PointNet++ based networks perform consis-
tently better than the original architecture on each of the
PartNet classes. Increasing the depth of the network allows
to achieve a higher accuracy on the most complex classes
such as Chairs or Lamps composed of 38 and 40 different
part categories respectively. Our deep architecture is also
able to better capture the boundaries between parts and thus
to predict the right labels very close from part edges. When
a sample is itself composed of many parts, having a deep

Table 3. Per-class IoU on PartNet when training a separate network
for each category, evaluated for three different architectures for
Chairs and Tables (60% of the whole dataset). Our lean networks
achieve here similar performance as their vanilla counterpart while
delivering significant savings in memory.

Chair Table

Vanilla | 29.2 (+0.0%) | 22.5 (+0.0%)

DGCNN Lean | 24.2(-17.1%) | 28.9 (+28.4%)
Vanilla | 30.8 (+0.0%) | 21.3 (+0.0%)

SCNN Lean | 31.1(+1.0%) | 21.2(-0.5%)
Vanilla | 404 (+0.0%) | 32.1 (+0.0%)

PointCNN Lean | 41.4 (+2.5%) | 33.1 (+3.1%)

Table 4. Memory and speed efficiency of our deep network Deep
LPN with respect to two different implementations of DeepGCNs.
Our network wins on all counts and successfully reduces the mem-
ory (- 75%) and increases the speed (- 48% and - 89% for the in-
ference and the backward time respectively).

Memory (Gb) | Inference Time (ms) | Backward Time (ms)
DeepGCN (Dense) 8.56 664 1088
DeepGCN (Sparse) 10.00 1520 445
Deep LPN | 2.18 (-75%) 345 (-48%) 67 (-85%)

architecture is a significant advantage.

As additional reference, we provide on Table 3 the per-
formance of our lean blocks applied to three architectures
when training one network per-object category on PartNet,
trained on Chairs and Tables as they represent 60% of the
dataset.

For reference, we provide as well the absolute values for
the efficiency of the previous networks measured by three
different metrics on Table 4 and Table 5: (i) memory foot-

Table 5. Efficiency of our network architectures measured with a batch size of 8 samples or less on a Nvidia GTX 2080Ti GPU. All of
our lean architectures allow to save a substantial amount of memory on GPU wrt. the PointNet++ baseline from 58% with mRes to a 67%
decrease with LPN. This latter convolution-type architecture wins on all counts, decreasing both inference time (-41%) and the length of
backward pass (-68%) by a large spread. Starting form this architecture, the marginal cost of going deep is extremely low: doubling the
number of layers in the encoding part of the network increases inference time by 6.3% on average and the memory consumption by only
3.6% at most compared to LPN). When used in conjunction with other base architectures, similar memory savings are achieved by our
blocks with low impact on inference time.

Efficiency (%) Memory Footprint (Gb) Inference Time (ms) Length Backward pass (ms)
ShapeNet-Part ScanNet PartNet | ShapeNet-Part ScanNet PartNet | ShapeNet-Part ScanNet PartNet | ShapeNet-Part ScanNet PartNet
PointNet++ 84.60 80.5 35.2 6.80 6.73 7.69 344 238 666 173 26 185
mRes 85.47 79.4 37.2 2.09 2.93 4.03 395 379 537 54 12 68
mResX 85.42 79.5 37.5 2.38 3.15 4.13 441 383 583 122 26 138
LPN 85.65 83.2 37.8 1.65 2.25 3.24 187 166 347 30 15 39
Deep LPN 85.66 82.2 38.6 1.42 2.33 3.31 205 177 356 37 23 51
Efficiency (%) Memory Footprint (Gb) Inference Time (ms) Length Backward pass (ms)
ShapeNet-Part ScanNet PartNet|ShapeNet-Part ScanNet PartNet|ShapeNet-Part ScanNet PartNet|ShapeNet-Part ScanNet PartNet
DGCNN Vanilla 82.59 74.5 20.5 2.62 7.03 9.50 41 194 216 41 82 104
Lean 83.32 75.0 21.9 0.81 3.99 5.77 32 158 168 21 45 57
SCNN Vanilla 79.86 72.9 17.9 1.09 4.33 5.21 22 279 142 45 99 249
Lean 81.61 73.2 18.4 0.79 3.25 3.33 28 281 150 132 443 637
PointCNN Vanilla 83.60 77.2 25.0 4.54 5.18 6.83 189 229 228 109 71 77
Lean 84.45 80.1 27.0 1.98 3.93 5.55 256 278 263 186 225 208

print, (ii) inference time and (iii) length of backward pass.
Our lean architectures consistently reduce the memory con-
sumption of their vanilla couterparts while having a very
low impact on inference time. When compared to Deep-
GCNs, our Deep LPN architecture wins on all counts by
achieving the same performance while requiring less mem-
ory (-75%) and shorter inference (-48%) and backward (-
89%) time.

2. Design of our architectures

In this section, we provide more details about how we
design our lean architectures to ensure reproducible re-
sults for the following architectures, (i) PointNet++ [6],
(i) Dynamic Graph CNN [7], (iii) SpiderCNN [8], (iv)
PointCNN [3] . We implement each networks in Pytorch
following the original code in Tensorflow and we implant
our blocks directly within those networks.

2.1. PointNet++ based architectures

To keep things simple and concise in this section, we
adopt the following notations:

e S(n): Sampling layer of n points;

rNN(r): query-ball of radius ;

MaxP: Max Pooling along the neighborhood axis;

€P: Multi-resolution combination;

Lin(s): Linear unit of s neurons;

Drop(p): Dropout layer with a probability p to zero a
neuron.

Inside our architectures, every downsampling module is it-
self based on FPS to decrease the resolution of the input
point cloud. To get back to the original resolution, upsam-
pling layers proceed to linear interpolation (Interp) in the
spatial space using the K,, = 3 closest neighbors. To gen-
erate multiple resolutions of the same input point cloud, a
downsampling ratio of 2 is used for every additional resolu-
tion.

2.1.1 PointNet++

In all our experiments, we choose to report the performance
of the multi-scale PointNet++ (MSG PN++) as it is reported
to beat its alternative versions in the original paper on all
tasks. We code our own implementation of PointNet++ in
Pytorch and choose the same parameters as in the original
code.

For segmentation task, the architecture is designed as
follow:
Encodingl:
['NN(.1) — mLP([32, 32, 64]) — MaxP
rNN(.2) — mLP([64, 64, 128]) — MaxP |
| FNN(.4) — mLP([64, 96, 128]) — MaxP
Encoding2:
[TNN(.2) — mLP([64, 64, 128]) — MaxP
rNN(.4) — mLP([128, 128, 256]) — MaxP | @
| 'INN(.8) — mLP([128,128,256]) — MaxP
Encoding3:
S(1)— mLP([256,512,1024]) — MaxP
Decodingl: Interp(3)— mLP([256, 256])
Decoding2: Interp(3)— mLP([256, 128])

S(512)—

S(128)—

=

I |
--, pool ~

pointNet shared MLP P0_0|;n9
—SIP - e nxc
_____ T SLP I I
single layer ! ' n -
erceptron 77 : I
p P — xLink—
; - —] k-neighbors | /2, ! l
E R N ° 1 L
1 kNN 1 n X c > |amErE {/ tT
e . — - Tt T+ cross link
neighborhood " °
lookup

Building Blocks

Figure 1.

+
S z

ﬂTIXC
Es3 N - BLNE

pooling

Elementary building blocks for point processing. Apart from standard neighborhood lookup, pooling and SLP layers, we

introduce cross-link layers across scales, and propose multi-resolution up/down sampling blocks for point processing. PointNet module
combines a stack of shared SLP (forming an MLP) to lift individual points and then performs permutation-invariant local pooling.

Decoding3: Interp(3)— mLP([128, 128])

Classification: Lin(512)— Drop(.7)— Lin(nbgjasses)

We omit here skiplinks for sake of clarity: they connect
encoding and decoding modules at the same scale level.

2.1.2 mRes

The mRes architecture consists in changing the way the
sampling is done in the network to get a multi-resolution
approach (see Fig. 2). We provide the details only for the
encoding part of the network as we keep the decoding part
unchanged from PointNet++.
Encodingl:
[S(512) — rNN(.1) — mLP([32, 32, 64]) — MaxP
S(256) — rNN(.2) — mLP([64, 64, 128]) — MaxP|
| S(128) — rNN(.4) — mLP([64,96,128]) — MaxP
Encoding2:
[S(128) — rNN(.2) — mLP([64, 64, 128]) — MaxP
S5(96) — rNN(.4) — mLP([128,128,256]) — MaxP | P
| S(64) — rNN(.8) — mLP([128, 128, 256] — MaxP
Encoding3:
S(1)— mLP([256,512,1024]) — MaxP

Starting from this architecture, we add Xlink connec-
tions between each layer of each mLP to get our mResX
architecture. A Xlink connection connects two neighbor-
ing resolutions to merge information at different granular-
ity. On each link, we use a sampling module (either down-
sampling or upsampling) to match the input to the target
resolution. We use two alternatives for feature combina-
tion: (i) concatenation, (ii) summation. In the later case, we
add an additional sLP on each Xlink to map the input fea-
ture dimension to the target. To keep this process as lean as
possible, we position the SLP at the coarser resolution, i.e.
before the upsampling module or after the downsampling
module.

Figure 2. Comparison of multi-scale processing (top) with multi-
resolution processing (down): multi-resolution processing allows

us to process larger-scale areas while not increasing memory con-
sumption, making it easier to elicit global context information.

2.1.3 LPN

Our convPN module can be seen as a point counterpart of
2D image convolution. To do so, the convPN module re-
places the MLP with its pooling layer by a sequence of SLP-
Pooling modules.

To simplify the writing, we adopt the additional nota-
tions:

e Sampling block S([s1, s2, .., 5,]T) where we make a
sampling of s; points on each resolution ?. When
only one resolution is available as input, the block
S([., 51, 82, -y Sn—1]T) will sequentially downsample
the input point cloud by s1, So, .. points to create the
desired number of resolutions.

e Convolution block C([r1, 72, ...,r,]7) is composed it-
self of three operations for each resolution i: neighbor-

hood lookup to select the ;NN for each points, an sSLP
layer of the same size as its input and a max-pooling.

e Transition block T([t1,ta, ..., t,]T) whose main role is
to change the channel dimension of the input to the one
of the convolution block. An sLP of ouput dimension
t; will be apply to the resolution <.

Residual connections are noted as *.

Encodingl:

. 32 1 32
S|512| — T |64 — C*|2| — T |64 —
256 64 A4 96
1 64 1 512
C* 2| =T [128] = C* [.2| = 5 [256| — &P
4 128 4 128

Encoding2:
] 64 2 2

S 1128 — T |128) — C* |4 — C* 4] —
| 96 | 128 .8 .8
[128] 2 128

T 256 -C* |4 =-S]|9 | - P
256 .8 64

Encoding3:

S(1)— mLP([256,512,1024]) — MaxP

Note here that there is no Transition block between the
first two C blocks in the Encoding2 part. This is because
those two Convolution blocks work on the same feature di-
mension.

We also add Xlinks inside each of the C blocks. In this
architecture, the features passing through the Xlinks are
combined by summation and follow the same design as for
mResX.

In the case of SLPs, using the on-the-fly re-computation
of the neighborhood features tensor has a significant pos-
itive impact on both the forward and backward pass by
means of a simple adjustment. Instead of applying the
SLP on the neighborhood features tensor, we can first ap-
ply the SLP on the flat feature tensor and then reconstruct
the neighborhood just before the max-pooling layer (Algo-
rithm 1). The same can be used for the backward pass (see
Algorithm 2).

2.1.4 Deep LPN

Our deep architecture builds on LPN to design a deeper ar-
chitecture. For our experiments, we double the size of the
encoding part by repeating each convolution block twice.
For each encoding segment, we position the sampling block
after the third convolution block, so that the first half of the
convolution blocks are processing a higher resolution point
cloud and the other half a coarser version.

Algorithm 1: Low-memory grouping - Forward
pass

Data: Input features tensor 7 (N X RPD), input spatial tensor
Ts (N x R3) and indices of each point’s neighborhood for
lookup operation £ (N x K)
’
Result: Output feature tensor Tf" (N x RP)
1 begin
’
/+ Lifting each point/feature to RP «/
2 'Tf/ <— SLPy ('Tf)
3 T +— SLPS(T5)
/* Neighborhood features
’ ’
(NxRP — NxRP x(K+1)) */
4 7}1/{ <+— IndexLookup(T;s, Ty, L)
/% Neighborhood pooling

(N x RP" x (K +1) = N x RP') +/
5 Tfo/ — MaxPooling(Tf}/()
6 FreeMemory(7_/, Tf' s 7—;/()
7 return '7—;/
s end

Algorithm 2: Low-memory grouping - Backward
pass

Data: Input features tensor 7y (IN X RP), input spatial tensor
Ts (N x R3), gradient of the output G+ and indices of
each point’s neighborhood for lookup £ (N X K)

Result: Gradient of the input G;,, and gradient of the weights G,

1 begin

/* Gradient Max Pooling

(NxRP — NxRP x(K+1)) */
2 G'E +— BackwardMaxPooling(Gout)

/+ Flattening features

(NxRP x(K+1)— NxRP) */
3 G/!, «— InverseIndexLookup(G™Z, L)

/+ Gradient wrt. input/weight x/
4 Gw,Gin +— BackwardSLP(T7y,Ts, Q(J;it)
5 | FreeMemory(7},Ts,Gour, G72,G1L,)
6 return (G;n, Gu)
7 end

2.2. DGCNN based architecture

Starting from the authors’ exact implementation, we
swap each edge-conv layer, implemented as an MLP, by a
sequence of single resolution convPN blocks. This set of
convPN blocks replicates the sequence of layers used to de-
sign the MLPs in the original implementation.

To allow the use of residual links, a transition block is
placed before each edge-conv layer to match the dimension
of both ends of the residual links.

2.3. SpiderCNN based architecture

A SpiderConv block can be seen as a bilinear operator
on the input features and on a non-linear transformation of

the input points. This non-linear transformation consists of
changing the space where the points live in.

In the original architecture, an SLP is first applied to the
transformed points to compute the points’ Taylor expansion.
Then, each output vector is multiplied by its corresponding
feature. Finally a convolution is applied on the product.
Therefore, the neighborhood features can be built on-the-fly
within the block and deleted once the outputs are obtained.
We thus modify the backward pass to reconstruct the needed
tensors when needed for gradient computation.

2.4. PointCNN based architecture

For PointCNN, we modify the y-conv operator to avoid
having to store the neighborhood features tensors for the
backward pass. To do so, we make several approximations
from the original architecture.

We replace the first MLP used to lift the points by a
sequence of convPN blocks. Thus, instead of learning a
feature representation per neighbor, we retain only a global
feature vector per representative point.

We change as well the first fully connected layer used
to learn the y-transformation matrix. This new layer now
reconstructs the neighborhood features on-the-fly from its
inputs and deletes it from memory as soon as its output
is computed. During the backward pass, the neighborhood
features tensor is easily rebuilt to get the required gradients.

We implement the same trick for the convolution opera-
tor applied to the transformed features. We further augment
this layer with the task of applying the x-transformation to
the neighborhood features once grouped.

Finally, we place transition blocks between each y-conv
layer to enable residual links.

2.5. Implementation details

In all our experiments , we process the dataset to have
the same number of points N for each sample. To reach
a given number of points, input pointclouds are downsam-
pled using the furthest point sampling (FPS) algorithm or
randomly upsampled.

We keep the exact same parameters as the original net-
works evaluated regarding most of parameters.

To regularize the network, we interleave a dropout layer
between the last fully connected layers and parameterize it
to zero 70% of the input neurons. Finally, we add a weight
decay of Se-4 to the loss for all our experiments.

All networks are trained using the Adam optimizer to
minimize the cross-entropy loss. The running average coef-
ficients for Adam are set to 0.9 and 0.999 for the gradient
and its square, respectively.

References

[1] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-

2

3

[4

[5

[6

[7

[8

]

]

]

]

]

]

—

lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and
Fisher Yu. ShapeNet: An Information-Rich 3D Model Repos-
itory. Technical Report arXiv:1512.03012 [cs.GR], Stanford
University — Princeton University — Toyota Technological
Institute at Chicago, 2015. 1

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias NieBner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In Proc. Com-
puter Vision and Pattern Recognition (CVPR), IEEE, 2017. 1
Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. 2018. 2, 3

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna
Tripathi, Leonidas J. Guibas, and Hao Su. Partnet: A large-
scale benchmark for fine-grained and hierarchical part-level
3d object understanding. CoRR, abs/1812.02713, 2018. 1
Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. CVPR, 1(2):4,2017. 1

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NIPS, pages 5099-5108, 2017.
2,3

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. arXiv preprint
arXiv:1801.07829, 2018. 2, 3

Yifan Xu, Tiangi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 87-102, 2018. 2,
3

