
Sketch2CAD: Sequential CAD Modeling by Sketching in Context

CHANGJIAN LI, University College London
HAO PAN,Microsoft Research Asia
ADRIEN BOUSSEAU, Inria, Université Côte d’Azur
NILOY J. MITRA, University College London and Adobe Research

AddPolyhedron: < plane 3, length 0.25 >

BevelCorner: < plane 3, corner 3 >

BevelCorner: < plane 3, corner 2 >

BevelCorner: < plane 3, corner 0 >

BevelCorner: < plane 3, corner 1 >

AddSweepShape: < plane 4, length 0.20 >

AddSweepShape: < plane 4, length 0.20 >

AddSweepShape: < plane 1, length 0.23 >

SubtractPolyhedron: < plane 12, length 0.03 >

SubtractPolyhedron: < plane 13, length 0.03 >

(a) inspirational sketch (b) sketching sequence using Sketch2CAD (c) inferred CAD instructions (d) CAD model

step 1 step 2

step 6 step 8 step 9

Fig. 1. Industrial designers commonly decompose complex shapes into box-like primitives, which they refine by drawing cuts and roundings, or by adding and
substracting smaller parts [Eissen and Steur 2008, 2011] (a, ©Koos Eissen and Roselien Steur). Users of Sketch2CAD follow similar sketching steps (b), which
our system interprets as parametric modeling operations (c) to automatically output a precise, compact, and editable CAD model (d).

We present a sketch-based CAD modeling system, where users create ob-
jects incrementally by sketching the desired shape edits, which our system
automatically translates to CAD operations. Our approach is motivated by
the close similarities between the steps industrial designers follow to draw
3D shapes, and the operations CAD modeling systems offer to create similar
shapes. To overcome the strong ambiguity with parsing 2D sketches, we
observe that in a sketching sequence, each step makes sense and can be
interpreted in the context of what has been drawn before. In our system,
this context corresponds to a partial CAD model, inferred in the previous
steps, which we feed along with the input sketch to a deep neural network
in charge of interpreting how the model should be modified by that sketch.
Our deep network architecture then recognizes the intended CAD operation
and segments the sketch accordingly, such that a subsequent optimization
estimates the parameters of the operation that best fit the segmented sketch
strokes. Since there exists no datasets of paired sketching and CAD mod-
eling sequences, we train our system by generating synthetic sequences
of CAD operations that we render as line drawings. We present a proof of
concept realization of our algorithm supporting four frequently used CAD
operations. Using our system, participants are able to quickly model a large
and diverse set of objects, demonstrating Sketch2CAD to be an alternate
way of interacting with current CAD modeling systems.

Authors’ addresses: Changjian Li, University College London, 66-72 Gower Street,
London, changjian.li@ucl.ac.uk; Hao Pan, Microsoft Research Asia, No.5 Danling Rd,
Beijing, haopan@microsoft.com; Adrien Bousseau, Inria, Université Côte d’Azur, 2004
route des lucioles, Valbonne, adrien.bousseau@inria.fr; Niloy J. Mitra, University Col-
lege London, 66-72 Gower Street, London, Adobe Research, n.mitra@cs.ucl.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/12-ART164 $15.00
https://doi.org/10.1145/3414685.3417807

CCS Concepts: • Computing methodologies→ Shape modeling.

Additional Key Words and Phrases: sketch, CAD modeling, procedural mod-
eling, convolutional neural network

ACM Reference Format:
Changjian Li, Hao Pan, Adrien Bousseau, andNiloy J.Mitra. 2020. Sketch2CAD:
Sequential CAD Modeling by Sketching in Context. ACM Trans. Graph. 39,
6, Article 164 (December 2020), 14 pages. https://doi.org/10.1145/3414685.
3417807

1 INTRODUCTION
Sketching and 3D modeling are two major steps of industrial design.
Sketching is typically done first, as it allows designers to express
their vision quickly and approximately [Eissen and Steur 2008].
Design sketches are then converted to 3D models for downstream
engineering and manufacturing, using CAD tools that offer high
precision and editability [Pipes 2007]. However, design sketching
and CAD modeling are often performed by different experts with
different skill sets, making design iterations cumbersome, expensive,
and time consuming.
While a number of methods have been proposed to create 3D

models by sketching, existing solutions often lack the precision and
editability of CAD modeling. On the one hand, interactive systems
interpret user strokes as custom modeling operations rather than
generic CAD [Bae et al. 2008; Igarashi et al. 1999; Nishida et al. 2016;
Zeleznik et al. 1996]. On the other hand, methods that interpret
complete sketches are limited to specific drawing techniques [Xu
et al. 2014] and classes of shapes [Lun et al. 2017], and output curve
networks or triangular meshes rather than editable models. As
stressed by a recent survey [Bonnici et al. 2019], to be widely used by
the design industry, “sketch-based modeling systems should integrate
seamlessly with existing workflow practices”.

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417807
https://doi.org/10.1145/3414685.3417807
https://doi.org/10.1145/3414685.3417807

164:2 • Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra

(a)

(b)
create box add cylinder bevel box smooth edge subtract cylinder

Fig. 2. Similarity between sketching and CAD modeling workflows. (a) As illustrated by this sequence from the OpenSketch dataset [Gryaditskaya
et al. 2019], industrial designers construct their drawings by starting from a simple shape (here a box) that they refine by adding or subtracting sub-parts
(wheels, beveled edges, hole). (b) Modern CAD software such as SketchUP [Trimble 2019] rely on very similar operations to model 3D shapes.

Our key observation is that despite their apparent differences,
design sketching and CAD modeling actually involve very similar
workflows, yet expressed in different languages. Industrial design-
ers often start their sketches by drawing the overall shape as an
assemblage of boxes and cylinders called scaffolds, which they then
refine by drawing roundings, sub-parts, and small details (Fig. 2a).
Similarly, CAD modelers often start with simple geometric primi-
tives that they refine to build up complex models by progressively
applying geometric operations (e.g., extrude, bevel, smooth) (Fig. 2b).
Based on this observation, we propose Sketch2CAD as a learning-
based interactive modeling system that translates sketching opera-
tions into their corresponding CAD modeling operations. Users of
our system thus express their ideas using similar sketching steps as
they would do on paper, yet obtain as output a regular CAD model,
along with a trace of the sequential operations, ready to be fabri-
cated or further edited with existing CAD software. Our system can
be seen as a translator that interprets user drawn strokes in context
of the current modeling session, and maps them into a sequence of
predefined CAD operations, along with their associated parameters.
The system empowers users to create regular CAD models without
having to navigate complex CAD system interfaces.

We first propose a common parameterization of popular sketching
and CADmodeling operations (e.g., extrude, bevel, add, subtract,
sweep). For each operation, our parameterization encodes the differ-
ent components of the CAD shape, which correspond to different
strokes in the sketch. For instance, a bevel operation is composed
of two parallel curves that define the new profile of the corner on
which it applies. Importantly, our parameterization also encodes
the faces of the current 3D model that should be modified by the
operation, since CAD operations are typically applied in sequence
to progressively achieve complex shapes.

The main challenge is then to recover, for every step of a sketch-
ing session, the intended modeling operation and the asociated
parameters. This is a highly ambiguous task, not only because the
strokes are often imprecise, but also because similar strokes might
have different meaning depending on the context in which they are
drawn. We propose a three-stage pipeline that progressively reduces

this ambiguity to produce regular CAD objects. The first stage clas-
sifies the sketch among possible CAD operations (extrude, bevel,
add, subtract, sweep). In addition to the user sketch, the classifier
takes as input depth and normal maps of the current 3D model,
which provides strong contextual cues about the intended operation.
The second stage segments the user sketch and contextual maps into
parts, specific to the target CAD operation. For instance, the sketch
of a bevel operation is segmented into its two profile curves, while
the contextual maps are segmented to form a mask of the face on
which the bevel operation needs to be applied. Finally, the third
stage instantiates the CAD operation by fitting parametric curves
or shapes on the segmented strokes and projecting these strokes,
optionally regularized, on the selected faces of the 3D model.
From a technical standpoint, we realize our classification and

segmentation stages with deep convolutional networks. In addition
to the design of CAD-specific segmentation networks, a contribution
of our work resides in a large training dataset of CAD-like objects
that we synthetically generated by sampling sequences of CAD
operations. We took special care in balancing this dataset such
that the most complex operations appear more frequently, and that
parameters of all operations are sampled uniformly. Furthermore,
we also balanced the length of the operation sequences, such that
our system can recognize CAD operations at any stage of a modeling
session.

In contrast to prior learning-based methods that were trained on
particular domains [Huang et al. 2016; Nishida et al. 2016] or selected
object classes [Lun et al. 2017], a key strength of our approach is
that it recognizes a set of existing CAD operations that can be
applied in arbitrary order, allowing the creation of a diverse range
of human-made objects. In addition, the parametric nature of each
such operation results in shapes that are highly precise and regular
despite very approximate input strokes. Figure 1 shows a typical
modeling session using Sketch2CAD. Finally, since our training is
entirely synthetic, we believe that the same approach can be used
to extend to support other operations.
While our sketch-based modeling system does not provide the

same level of comprehensive modeling as modern CAD software

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

Sketch2CAD: Sequential CAD Modeling by Sketching in Context • 164:3

like SketchUP [Trimble 2019] and TinkerCAD [Autodesk 2019], it
demonstrates an alternate way of interacting with existing CAD
systems without requiring repeated command selection and switch-
ing. Our interface can be particularly attractive to product designers
or novice users who are more fluent with sketching than with CAD
modeling interfaces. By allowing non-experts to quickly produce
complete CAD protocols (see Sec. 8.1), our tool holds the potential
to facilitate more direct collaboration between novices and experts.
In summary, our main contributions are:
• formalizing a set of common CAD operations and their cor-
responding sketches, allowing an automatic translation be-
tween the two domains;

• developing a pipeline of deep neural networks capable of
recognizing and segmenting CAD operations from sketches
drawn over 3D shapes, and producing precise, regular 3D
geometry by fitting CAD parameters on the predictions;

• designing a large dataset of synthetic CAD models, along
with their step-by-step construction sequences; and, as a cul-
mination of these taken together,

• presenting Sketch2CAD as a novel sketch-based modeling
system that unifies the sequential workflows of product de-
sign sketching and CAD modeling.

Code, training data, and the Sketch2CAD system are available on
the project page for research use.

2 RELATED WORK
Our work aims to bridge the gap between sketch-based and CAD
modeling.

CAD modeling. Computer-Aided Design has long been adopted
by the industry to create precise and high-quality 3D models suit-
able for physical simulation, lighting simulation, and downstream
manufacturing [Autodesk 2019a,b; Robert McNeel & Associates
2019; Trimble 2019]. However, the high precision offered by CAD
comes at the price of complex interfaces to allow users to select
appropriate geometric operations and tune their parameters. Vari-
ous approaches have been considered to reduce this user burden,
from automatic alignment of existing CADmodels on scanned point
clouds [Avetisyan et al. 2019], to educational visualizations of mod-
eling sequences [Denning et al. 2011]. We contribute to this effort
by instantiating CAD operations by sequentially interpreting hand-
drawn sketches.
Closer to our work are methods aiming at converting raw 3D

meshes into editable CAD models, which can be formulated as a
form of program synthesis [Du et al. 2018; Sharma et al. 2018; Tian
et al. 2019]. On the one hand, leveraging the sequential nature of
sketching and CAD modeling makes our problem better posed than
the conversion of complete objects that these methods target. On
the other hand, we take as input approximate sketch lines rather
than precise 3D models, which induces additional ambiguity. Ellis
et al. [2018] also applied program synthesis to convert sketches to
graphics programs, but focused on 2D diagrams and as such did not
consider depth recovery.

Sketch-based modeling. Existing work on sketch-based modeling
can be broadly classified into offline and online methods. Offline

methods aim at interpreting complete drawings, either automat-
ically or with user assistance. Early algorithms detect geometric
constraints between curves, such as parallelism, orthogonality and
symmetry, and solve for the 3D curve network that best satisfies
these constraints [Cordier et al. 2013; Lipson and Shpitalni 1996;
Naya et al. 2002; Wang et al. 2009; Xu et al. 2014]. The main lim-
itation of these methods is that they require clean drawings as
input to detect and enforce relevant constraints. In addition, the
curve networks they produce are not directly usable by downstream
3D modeling and simulation software. These limitations are partly
addressed by interactive tools that allow users to align geometric
primitives over the drawing [Gingold et al. 2009; Shtof et al. 2013].
While the parametric nature of these primitives brings robustness
to approximate inputs, users of these systems need to provide a
number of annotations to achieve precise alignment and relative
positioning. We differ from the above methods by exploiting the
common sequential nature of sketching and CAD modeling, which
allows us to automatically recognize parametric CAD operations as
soon as they are drawn rather than during a subsequent annotation
process.
In contrast to the above optimization-based approaches, recent

work has explored the potential of deep learning to automatically
reconstruct 3D objects from one or several sketches [Delanoy et al.
2018; Li et al. 2018; Lun et al. 2017; Su et al. 2018]. Since these meth-
ods build strong shape priors from training data, they are limited
to specific classes of objects [Delanoy et al. 2018; Lun et al. 2017;
Su et al. 2018] or types of surfaces [Li et al. 2018]. Besides, all these
methods predict depth maps or voxel grids that are then converted
to triangular meshes, which, in contrast to CAD models, greatly
limits the precision and editability of the resulting 3D models. While
we also build on powerful deep convolutional networks, a strength
of our approach is to predict CAD operations rather than complete
objects. Combining these operations allows users to produce a wide
variety of parametric shapes, which are precise and editable by
construction, and allow for generalization across different CAD
models.
The sequential workflow we offer makes our method closer in

spirit to online sketch-based modeling systems, where users cre-
ate complex 3D shapes incrementally by alternating between 2D
sketching and 3D navigation. Because of the difficulty of recovering
3D shapes from 2D strokes, a number of systems focus on specific
modeling operations, such as inflation of smooth shapes [Igarashi
et al. 1999; Nealen et al. 2007] or creation of sparse networks of
3D curves [Bae et al. 2008; Schmidt et al. 2009]. Closer to our work
are methods that enable the creation of CAD models representing
man-made shapes. Rivers et al. [2010] resolve 2D-to-3D ambiguity
by asking users to draw the shape parts in three orthographic views,
as common in CAD software. We instead let users draw in a single
perspective view, as common in product design sketching. The sem-
inal SKETCH system by Zeleznik et al. [1996] and GiDES++ by Jorge
et al. [2003] include some of our CAD operations. However, users
of SKETCH specify these operations using a custom vocabulary of
sketching gestures, while users of GiDES++ need to decompose ob-
ject parts into individual strokes interpreted one by one using a set
of hand-crafted rules. Our originality is to automatically recognize
the CAD operations and recover their parameters from freehand

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

164:4 • Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra

Type: sweep

Extrude Parameter Fitting

Bevel Parameter Fitting

Add/Sub Parameter Fitting

Sweep Parameter Fitting

face map curve map

~

~

~

Protocol
SubPoly: <plane 1, length 0.78>
AddSweep: <plane 1, length 0.1>
BevelCorner: <plane 1, corner 3>

Protocol
SubPoly: <plane 1, length 0.78>
AddSweep: <plane 1, length 0.1>
BevelCorner: <plane 1, corner 3>
SubSweep: <plane 5, length 0.08>

Existing shape and input sketch Resulting shape matching the sketch

Fig. 3. Sketch2CAD at inference time. Given an existing shape and input sketch strokes (shown in orange) for the current operation, we first obtain the
maps of sketch and local context (i.e., depth and normal), which are fed to the operator classification and segmentation networks. The classified operator type,
sweep in this example, is used to select the output base face and curve segmentation maps, based on which the parameters defining the operator are fitted, via
an optimization, to recover the sketched operation instance. The recovered operator is then applied to the existing shape to produce the updated model;
meanwhile, the operation is pushed into the protocol list.

sketches, which allows users to directly draw complete parts of the
shapes they wish to obtain, without requiring to learn a set of new
gestures. We achieve this recognition using deep neural networks
trained on synthetic CAD modeling sequences. While Huang et
al. [2016] and Nishida et al. [2016] explored a similar usage of deep
learning for procedural modeling, they target shapes with fixed
numbers of parameters, created using a fixed order of operations.
For example, Nishida et al. assume that to create a building, users
start by sketching the building mass, then the roof, the facades, and
finally the windows. In contrast, a major challenge we face is to
recognize generic CAD operations with varying number of parame-
ters, sketched in any order. We achieve this goal by accounting for
the context under which the sketch is drawn. Furthermore, while
Huang et al. and Nishida et al. use a regression network to predict
the parameters of their shapes, we found this strategy to fail on the
more ambiguous problem we target, and instead use a classifica-
tion network to segment the sketched strokes into CAD-specific
components on which we subsequently fit geometric primitives.
We draw inspiration from several earlier systems that explored

the possibility to sketch novel shapes in the context of an existing
scene, represented as photographs or 3Dmodels [De Paoli and Singh
2015; Favreau et al. 2015; Lau et al. 2010; Li et al. 2017; Paczkowski
et al. 2011; Xu et al. 2019; Zheng et al. 2016]. However, these method
use the existing context to either guide user sketching or to deduce
geometric constraints for lifting the sketch to 3D. Our originality is
to leverage context within a sequential modeling workflow, where
the existing scene informs the recognition of the intended CAD
operation, which aims at modifying that scene.

3 METHOD OVERVIEW
Suppose we work with solid CAD models M := {M⊂R3 |M=M},
whereM is the closure ofM ; in the implementation, we represent
the models by their boundaries as triangle meshes. We define a
set of CAD modeling operators O = {O(θ, ·) : M → M}, where
each applied operator M ′ = O(θ ,M) changes the input geometry
M to a new shapeM ′ and is defined by a parameter vector θ that
specifies both the parts ofM to be modified and the corresponding
modification parameters. Note that different operations can have

different number and types of parameters. In the sketch-based CAD
modeling, our primary goal is to interpret a sketch drawn over an
existing shape as the corresponding operator with proper param-
eters that changes the shape to match the 2D sketch. The overall
process is illustrated in Fig. 3. Formally, given the current shapeM
and the 2D sketch curves S = {si } with known viewpoint v ∈ R6,
we strive for the mapping Φ(M, S, v) = O(θ, ·) such that the image
of O(θ,M) closely matches S when viewed according to v. We use
the orthogonal 3D to 2D projection in our approach. In the follow-
ing discussion, whenever possible, we omit the parameters of an
operator for brevity.

Due to the diversity and infinite variation of operators, neither the
brute-force exhaustive enumeration of all operators and parameters
nor the traditional stochastic or energy based optimizations can
efficiently solve the inverse problem. Instead, we approach this
problem by using deep learning. In particular, we train a two-stage
neural network that models the mapping Φ, where the first stage
predicts the operator type and the second stage segments the sketch
and context maps into regions, on which the specific parameters
for the operator are fitted to instantiate the operation. The key
technical challenges are how to design the machine learning models
and training tasks such that the inverse mapping is feasible, learned
by the neural networks and reliably generalized to real modeling
interaction.

We present the definition and parameterization of specific opera-
tors in Sec. 4, the neural networks and their usage for the inverse
mapping in Sec. 5, and how to train the networks for reliable gener-
alization in Sec. 6.

4 THE OPERATORS
In the current system we support the following four operations, i.e.
face extrusion, beveling a corner, addition/subtraction of a right
polyhedron, and sweeping a cylindrical shape (see Fig. 4 for illustra-
tions). We choose the four operators because they are widely used
both in sketching workflows and CAD modeling, and can already
be interleaved to generate complex shapes; nonetheless, our system
can be easily extended to incorporate more operators as needed.
To fully describe an operator O(θ, ·), we define its parameters θ , its

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

Sketch2CAD: Sequential CAD Modeling by Sketching in Context • 164:5

Extrude

param: base face f , offset d
action: move f along its normal direction

for d
sketch: edges of the moved f and the ex-

tended side edges

f

d

Bevel

param: base face f , corner c with an oppo-
site corner c′, profile curve l on f

action: turn c and c′ into rounded corners
specified by l

sketch: l and its offset by vector cc′

f

lcc′

Add/Subtract

param: base face f , prism base curve c , pro-
file length d , add/subtract option
o = ±

action: build a prism with base c and pro-
file edge of length d in the normal
direction of f , then find the union
(o = +)/difference (o = −) of base
shape and the prism

sketch: edges of the prism

f

d
c o=+
d

co=−

Sweep

param: base face f , base/offset circles c0, c1,
profile curve cp , add/subtract option
o = ±

action: build a swept shape by rolling the
profile curve cp along c0, c1, then
find the union (o = +)/difference
(o = −) of base shape and the primi-
tive

sketch: circles, profiles of swept shape

f
c0

cp
c1

Fig. 4. Operators supported in Sketch2CAD. In each inset, the parame-
ters defining the operator are annotated and the corresponding sketches are
shown over the existing shape, while the result of applying the respective
operation is shown as the updated shape.

applied action M ′ = O(θ ,M) for given M , and the corresponding
sketches S that a user draws to specify it.

Extrude. Extrusion is the simple offset of a planar face of the
3D shape along the face normal direction. As shown in Fig. 4, the
parameters defining the operator are the face f to be offset and the
distance d along face normal vector for the extrusion, with d > 0 for
pulling out and d < 0 for pushing in. The corresponding sketches
are the lines extruded and the boundaries of the offset face.

Bevel. Bevel, also known as rounding [Eissen and Steur 2011]
in sketching or fillet in CAD modeling, is to turn a sharp crease
of an object into a smooth and rounded connection. As shown in
Fig. 4, the operator is defined on the crease connecting two corners
c, c ′, with c residing on the base face f ; the sharp edge cc ′ is then
turned into a smooth connection with profile curve l that rounds c

on f . The sketches corresponding to such an operator are the profile
curve l on f and its parallel obtained by translation by cc ′.

Add/Subtract. The addition or subtraction operator is to place a
primitive shape (a prism) over a base shape and compute the union
or difference of the two shapes. The parameters are used to designate
the base face f to place the primitive, and to define the primitive
shape by specifying its base curve c as one of triangle, quadrilateral,
pentagon, or hexagon, as well as its profile curve that is always
parallel to the base face normal with length d . In addition, the option
o of union (for addition) or difference (for subtraction) between
the base shape and the primitive is specified. The corresponding
sketches are simply depicting the primitive shape by highlighting
its feature curves.

Sweep. Sweeping a curved profile line along two circular rails is
another commonly used operation in CAD modeling, which also
appears frequently in industrial design sketching in the form of
horizontal ellipses joined by a vertical section (see Fig. 4). Similar to
add/subtract, the swept shape is combined with the base shape
by either union or subtraction; therefore, the sweep operation can
be seen as a special add/subtract where the primitive shape is a
swept cylindrical shape. The parameters to define the sweep oper-
ation consist of the base and offset circles, and the profile curve
whose two ends lie on the two circles. There is also the union and
difference option to specify the combination with base shape. The
corresponding sketches simply show the swept shape through its
two circular ends and a pair of profile curves. The add/subtract
and sweep operators are denoted as Add/SubtractPolyhedron and
Add/SubtractSweepShape respectively in operation sequences (see
Figs. 1, 3 and 6) for distinction.

Extension to more operators. One can follow the above examples
to define new operators. In general, the parameters of the operator
should be minimal but complete in defining its actions without am-
biguity. The corresponding sketches should be concise and capture
the important features of the operation. All these designs will im-
pact the machine learning models used for recovering the operator
instance from sketches, as discussed later in Sec. 5.

Protocols for CAD modeling. A protocol file is a serialization of
the modeling steps. It consists of the full set of parameters specify-
ing the operators that are applied in sequence to obtain the final
shape. A protocol can be saved, loaded, edited, and reused for more
complex modeling tasks. Illustrations of a protocol as the sequence
of operations it contains are shown in Figs. 1, 3, 6. More protocol
texts for generating models shown in Fig. 12 can be found in the
supplemental material.

Implementation of operator actions. In our current implementa-
tion, we represent the 3D solidmodels by their boundaries as triangle
meshes, but always maintain a set of planar polygonal faces that are
made of adjacent triangles of coplanarity, by flooding across mesh
edges with tight dihedral angle thresholding (< 1◦). When applying
any of the operators defined above which require planar bases, the
base face is selected as one of the planar polygons, and the action
is carried out by computing the appropriate Boolean operation be-
tween the sketched primitive and the base mesh, using CGAL [The

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

164:6 • Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra

CGAL Project 2020]. While for extrude,add/subtract,sweep the
sketched primitives are clear, for bevel, we construct a prism whose
base face is defined by connecting c and l and whose profile edge
is cc ′ (Fig. 4), and subtract it from the base shape. In the future,
when extending to operators applied on curved faces, we consider
upgrading our underlying geometry representation to more flexible
ones, e.g. NURBS (Sec. 8.4).

5 CONTEXT DRIVEN SKETCH INTERPRETATION
After sketching an operation in the modeling session, there are
three steps taken to interpret the current sketch S: the recognition
of the operator type O by an classification network, the extraction
of the individual regions from the input maps by the segmentation
network for the operator type O, and the recovery of parameters θ
defining the specific instance O(θ, ·) by counting and curve fitting.
Finally, the regressed operator is applied to the existing geometry
to carry out the modeling intention of the user.

For all networks, the input is the concatenation of three maps, all
of spatial size 256 × 256: the sketch map S , with S(x,y) = 1 for the
stroke pixels (x,y) and S(x,y) = 0 otherwise, and the local context
maps D,N encoding depth and normal, obtained by rendering the
existing geometry along the sketched viewpoint v. The viewing
frustum for generating the maps is twice the size of the sketch
bounding box, to ensure the user input is well covered. For the
depth map, D(x,y) ∈ [0, 1] is the normalized depth value for a
foreground pixel (x,y) andD(x,y) = 0 to indicate background pixels.
We normalize the depth map linearly such that the farthest depth is
mapped to 0 and the closest depth to 1, thus removing the dynamic
range of possible depth values to ease learning. For the normal map,
N (x,y) ∈ R3 is the normal vector that is first transformed into the
3D camera space and then shifted by (1, 1, 1) for a foreground pixel,
and N (x,y) = (0, 0, 0) for background pixels.

5.1 Operator classification
The classification network is a CNN with alternative layers of con-
volution and pooling that finally outputs the probabilities for the
operator types that the input sketch represents; see supplemental
material for the detailed structure. The training loss is the weighted
cross entropy:

Lcls (S,D,N) = −wO log (PO), (1)

where O is the ground truth operator type for the input training
sample, the class weights (wO′)O′∈O are computed by normalizing
the inverse type frequency vector

(
1

NO′

)
O′∈O

, with NO′ the number
of training samples of type O′, and PO is the predicted probability of
the operator being of type O. We use weights for different operation
types to avoid potential statistical bias caused by their contrastive
frequencies in the training set, as discussed in Sec. 6.

5.2 Operator regression
Rather than directly regressing the parameters, we solve the regres-
sion in two steps: first, we use deep neural networks to segment the
sketch and context maps into regions corresponding to the defining
structures of the operators, and second, we fit operation parameters
to the detected regions using counting, searching and optimization

procedures. The benefits of such a two-step regression, are that the
networks are only required to learn the single-modality segmenta-
tion tasks, which is considerably more tractable than brute-force
regression of diverse operator parameters, and that the parameter
fitting is robust to inaccuracies of network predictions. Further, this
design choice facilitates generalization across different operations.
In contrast, by trying to regress directly the various parameters
of an operation, we face several difficulties: to recover the extru-
sion and offset distances from 2D images has the inherent scale
ambiguity, the number of base polygon sides of the add/subtract
operation is changing and needs complex network structures to
accommodate, and the regression of curved strokes requires fixed
Bezier or spline parameterization, while in our case we can choose
suitable representations to do the curve fitting.

The general network structure. Each of the segmentation networks
is a U-Net that outputs two maps through two decoder branches: the
probability map F of base face, and the curve segmentation map C ,
both of spatial size 256×256 and channel width 1; details of network
structures are provided in the supplemental material. To train the
network, the loss function is in the following general form:

Lr eд(S,D,N) =
1

2562
∥F − F̃ ∥2 +

1
|M̃ |

∥M̃ ⊙ (C − C̃)∥2,

where maps with ∼ are ground truth or precomputed maps, i.e., F̃
is the ground truth base face map with F̃ (x,y) = 1 for foreground
pixels and zero otherwise, C̃ is the ground truth stroke map, and M̃
is the corresponding stroke pixel mask. ⊙ is the component-wise
product, and | · | sums the map pixel values.

Given the predicted face map, we find the base face f by counting.
To be specific, we first binarize the face map F by threshold 0.5, then
render the face ID map of existing geometry Id(x,y) ∈ { fi }, and
finally find the face f = f ∗ with the highest accumulated probability,
computed as f ∗ = argmaxfi

∑
Id (x ,y)=fi F (x,y).

Different operators have their specific curve segmentation maps
C and C̃ . The principle for designing the curve maps is that the input-
output pair should be a learnable mapping without strong ambiguity.
Next, we present the details of regression for each operator.

Extrude regression. We specify the ground truth extrusion curve
segmentation map in this way: C̃(x,y) = 1 for pixels of the offset
curve, and C̃(x,y) = 0 for profile curve pixels (see Fig. 4). Corre-
spondingly, given the network predicted curve map C , we find the
map of offset curve as Co (x,y) := (C(x,y) > 0.5) ∧ (M̃(x,y) = 1),
and the map of profile curves as (C(x,y) ≤ 0.5) ∧ (M̃(x,y) = 1).
Having classified the pixels, we find the extrusion distance d

by line search. In particular, the edges of the base face, denoted
as ∂ f , are extruded along normal direction nf for d to match Co .
The linear search has a fine step size σ = 0.0075 and search range
[−1.5, 1.5], whereas the initial shapes have unit diagonal bounding
box length. Note that by including the negative search range, we
allow pushing the base face inside the model as well. We define the
matching distance of the extruded face edges and the offset curve
map, as dist(d) :=

∑
p∈∂f minCo (q)=1 ∥πv(p + dnf) − q∥, where p

samples face edges uniformly by arc length, q ranges over image
pixels, and πv : R3 → R2 is the projection function of the current

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

Sketch2CAD: Sequential CAD Modeling by Sketching in Context • 164:7

add

subtract

add/subtract

nf

(a) (b)

Fig. 5. Handling ambiguity between add versus subtract. The ambigu-
ity of distinguishing base and offset curves for the add/subtract operator.
(a) cases without ambiguity, as only one of the red and blue curves intersects
with the base face. (b) ambiguous case that can be add or subtract, with
the base curve being either red or blue. Instead of segmenting the base and
offset curves, we regress two curves along the face normal direction (red
first, blue second), thus removing ambiguity.

view. The line searched d with minimum dist(d) is the regressed
extrusion distance.

Bevel regression. The ground truth curve segmentation map for
the bevel network encodes the two curves l and l ′ (see Fig. 4) in
this way: C̃(x,y) = 1 for pixels of l and C̃(x,y) = 0 for pixels of
l ′. Correspondingly, we find the predicted base face curve map as
Cl (x,y) := (C(x,y) > 0.5) ∧ (M̃(x,y) = 1), and the map of l ′ as
(C(x,y) ≤ 0.5) ∧ (M̃(x,y) = 1).
Assuming the profile curve is drawn in one stroke, we find the

stroke corresponding to l by counting. Let s∗ be the stroke with
the highest accumulated probability: s∗ := argmaxsi ∈S

∑
p∈si Cl (p),

where p uniformly samples si in the screen space. We then fit a
cubic Bezier curve as l to match s∗ as it is back projected onto the
plane of f . Given f and l , we determine the corner c as the shared
vertex of the two edges of f which intersect with l . Once we have c ,
the opposite corner c ′ is found easily.

Add/subtract regression. For the add/subtract operator, there
is ambiguity with outputting the base and offset curves directly,
as is illustrated in Fig. 5. To remove this ambiguity, we instead
regress the two curves as ordered along the face normal direc-
tion and named the start and end curves, respectively. The ground
truth curve map is given by C̃(x,y) = 0 for the start curve pixels,
C̃(x,y) = 1 for the profile curve pixels, and C̃(x,y) = 2 for the end
curve pixels. Therefore, we obtain the predicted maps for the start
curve Cs (x,y) := (C(x,y) ≤ 0.5) ∧ (M̃(x,y) = 1), the profile curve
Cp (x,y) := (0.5 < C(x,y) ≤ 1.5) ∧ (M̃(x,y) = 1), and the end curve
Ce (x,y) := (C(x,y) > 1.5) ∧ (M̃(x,y) = 1).

The add/subtract operation has more complex parameters than
extrude or bevel (see Fig. 4), the recovery of which also involves
more steps: we first classify the strokes according to the predicted
curve map, then fit 2D curves to the strokes and determine the
add/subtract option, and finally back project the base curve to the
3D base face and recover the prism length by line search.

Again, we classify strokes by pixel counting. For a stroke si , let its
likelihood of being starting curve as Ls (si) :=

∑
p∈si Cs (p), where

p samples si uniformly, and similarly we have Lp (si), Le (si) for the

likelihood of being profile and end curves, respectively; the curve
type of si is the one with largest likelihood.
We assume each of the profile curves is drawn by one stroke;

therefore the number of profile strokes tells the N -gon of the prism
base. We then find the end points of the profile curves grouped
into the beginning set and the end set, which are used as the initial
guess for fitting N -gons to the starting and ending strokes through
iterative closet point method, respectively.
To determine the add/subtract option o, we check the intersec-

tions of fitted polgyons with the base face f . If the start polygon
Ps intersects f , we have o = + the addition. Otherwise if the end
polygon Pe intersects f , we have o = − the subtraction. However, if
none of the two intersects with f , the sketch is regarded erroneous
with no matching operator instance. The user is alerted with this
failure. For the ambiguous case shown in Fig. 5(b), the above proce-
dure implies the default addition option, and the user can switch it
manually if needed (Sec. 7).
Finally, the 2D base polygon, i.e., Ps for addition and Pe for sub-

traction, is back projected onto the plane of f to obtain the 3D prism
base polygon, and the prism length d is obtained by line searching
the 3D base polygon along normal direction to match the pixels of
the offset end. The line search process replicates that for extrusion.

Sweep regression. Since the sweep operator is a special case of
the add/subtract operator, the curve maps are the same for both
operators. The fitting of parameters is much like add/subtract
operator as well, with minor differences in curve fitting. Note that
we restrict the sweep operations to circular cross sections.

The start and end curves are fitted as ellipses to the corresponding
curvemaps. After having determined the base curve and add/subtract
option, the ellipse is back projected to the base face plane as the base
circle c0 (see Fig. 4). The offset d , defined as the distance between the
two circle centers, is again found by line search as done in extrusion,
except to match the base circle center to the offset curve center in
this case. The offset circle c1 is then obtained by back projecting the
offset ellipse to the translated base face plane by distance d .
To recover the profile curve, we first determine the 3D plane it

lies on. For one of the 2D profile strokes, it has an intersection point
with each of the two ellipses. The intersection points are lifted to 3D
following the ellipse-circle back projection. The centers of c0, c1 and
any of the two intersection points together determine the 3D plane
that the profile curve resides in. We fit a cubic Bezier curve inside
the plane to the profile stroke points, to obtain the profile curve.
Finally, if we detect that the profile curve to be nearly linear and
that the two circles have similar radii, we rectify the swept shape to
be a cylinder.

6 TRAINING DATA GENERATION
To train the networks for robust performance on real sketching
interactions, we need a large-scale data set that covers the possible
variations. Thanks to the procedural nature of CAD modeling, we
can generate the training data by synthesizing diverse procedures
(Fig. 6). The training data generation therefore consists of two steps,
the modeling sequence generation and the sketch image rendering,
as discussed below.

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

164:8 • Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra

Protocol
AddPoly: <plane 3, length 0.7>
AddPoly: <plane 1, length 0.5>
AddPoly: <plane 5, length 0.9>
AddSweep: <plane 3, length 1>

Renderer

Viewpoint sampler

context & stroke maps

classification

 regression

face & segment maps
synthesized protocol set shape and sketch curves

Fig. 6. Sketch2CAD at training time. We synthetically generated 10k protocols of diverse lengths for procedurally generating 40k training shapes. For each
protocol, we execute it up to the last operation, for which the sketch curves are built and overlaid on the built shape. The sketch curves and existing shape are
rendered in proper viewpoints to generate the input sketch and local context maps, as well as the ground truth face and curve segmentation maps, which are
used to train the operator classifier and the corresponding segmentation network.

Sequence generation. Given a set of CAD modeling operations
{Oi }, we generate training data that allows the network to learn
to infer from 2D sketches the corresponding operations robustly,
while avoiding the prohibitive enumeration of the infinite space of
all possible 3D models and configurations of operations. Our key
observation for achieving this goal is that while in theory one part
of a 3D model can potentially be connected with every other part of
the model, it is the local context that influences the part geometry
the most and therefore provides the dominant cue for interpreting
its 2D sketch properly. Based on this observation, we only need to
extensively enumerate the local combinations of different opera-
tions producing diverse model variations to train the network. Thus
in practice, for each operation O, in addition to its own parametric
variations, we search for a sequence {O1, · · · ,Om } of random oper-
ations, that are applied before the operation, i.e., O ◦ Om ◦ · · · ◦ O1,
to simulate the local context variations. Indeed, we find that with
0 ≤ m ≤ 3, there can be very complex combinations and shapes
generated; some examples are shown in Fig. 7.

To balance complexity, for each sequence lengthm+1 ∈ [1, 2, 3, 4],
we generate 10k protocols, thus 40k shapes in total. For sequences of
each length, the last operator O has a fixed frequency for different
types, i.e., 1 : 1 : 4 : 2 for extrude, bevel, add/subtract and
sweep; the ratios are chosen to account for the different complexities
of the four operators, allocating more samples for add/subtract
and sweep which have more degrees of freedom. In addition, we
generate 10k protocols with the same distribution for testing the
networks. Note that since we weight the different operation types
by their inverse frequencies in the dataset (Eq. 1) for training the

Fig. 7. Procedurally generated training set. Sample synthesized shapes
and next step sketch by randomized combination of operations. Within only
four steps, very complex shapes can already be created.

classification network, such a non-uniform distribution does not
cause bias for operation recognition.

While always starting with a base box shape, we randomize each
operation instance in a synthesized sequence to cover sufficient
geometric variations while avoiding degeneracy. This includes, for
example, selecting a random planar face from the existing shape as
the base face, applying offsets sampled in a large range, generating
base polygons or circles that have centers positioned randomly
inside the base face region, and polygons and profile curves that are
perturbed without self-intersection.

Sketch rendering. We design the rendering process to mimic how
real sketch drawing looks like. To render the corresponding sketch
and context maps of an operator in the generated sequence, we ran-
domly sample informative views around the base face of the operator,
with view directions forming angles in the range of [20◦, 80◦] with
the face normal. The viewing frustum is centered around the sketch
curves, and further scaled by a random factor in range [1.6, 2.4] to
create different zooming effects. We filter out the views where for
the extrusion operation, the offset curve is occluded for more than
20%, or for the other operations, the base curve is occluded for more
than 20%, as such viewpoints are unnatural to take in real sketching.
The 3D curves of an applied operator instance are first projected
onto the 2D camera space, then perturbed at the endpoints randomly
by a Gaussian noise, and finally smoothed a little for regularization,
which reproduces the style of rough freeform sketching.

Fig. 8. Sketch2CAD UI. A screenshot of our prototype implementation.
The tool features freeform and interactive sketching over a 3D shape in the
central canvas, the editing of recovered operation parameters on the left,
and the illustration of the operation sequence on the right.

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

Sketch2CAD: Sequential CAD Modeling by Sketching in Context • 164:9

(a) (b) (c) (d)
Fig. 9. Stroke regularization and auto-completion in Sketch2CAD.
(a)-(c): the corners of the sketched quadrangle are detected to be close
to right angles, and automatically regularized to form a rectangular base
polygon. (c)-(d): auto-completion by reflecting the primitive against the
horizontal cross section of the base shape.

7 THE MODELING SYSTEM
We build a prototype modeling tool to demonstrate our approach.
The tool features interactive modeling with an user interface that
allows sketching in 2D and instant feedback viewed freely in 3D.
A screenshot of the our tool is shown in Fig. 8. Please refer to the
supplemental video for real time sketching and modeling sessions.
Besides sketching, the tool allows the user to save, load, replay

and edit the sequence of operations stored in protocol files, thus
fully demonstrating the power of the procedural CADmodeling par-
adigm. To assist the easy sketching of precise CAD models, our sys-
tem also implements techniques like the regularization of sketched
curves, the tuning of operation parameters, and auto-completion by
replicating sketched primitives through symmetry, as detailed next.

Regularization. In addition to the inherent regularization enabled
by casting sketch into predefined operations in the procedural lan-
guage level, our interface applies curve-level regularization, like
snapping and rectification, to assist user sketching, as is commonly
found in CAD modeling software. The general idea of snapping
is to detect key points, e.g., centers, edge middle points, corners
of the base face, and align the corners and centers of the sketched
primitive shape with them, whenever the point pair comes within a
(default) small distance. The general idea of rectification is to detect
the approximate parallelism between sketched edges and base face
edges, as well as the approximate equality of corner angles/edge
lengths of sketchedN -gons, and enforce the parallelism and equality
by constructing parallel edges and regular N -gons analytically.
In particular, the snapping happens when the distance between

the nearest key point pairs is within 10% of the diameter of the base
face. The rectification happens when the differences of edge angles
from zero, or of corner angles from (N−2)180◦

N , are within 20◦, for
parallelism and corner equalization, respectively. It also happens
when the differences of side lengths are within 20% of the average

(a) (b) (c) (d)

Fig. 10. Tuning the parameters of operations in Sketch2CAD. (a)-(b):
a cylinder is sketched onto the base box, but only the cylinder is kept. (b)-(c):
a swept shape is added. (c)-(d): the offset distance between the two circles
of the swept shape, as well as the top circle radius, are enlarged by tuning
their parameter values.

Ref. P1, 12mins P2, 14mins P3, 10mins P4, 10mins P5, 6mins P6, 10mins

Ref. P1, 10mins P2, 8mins P3, 14mins

P4, 10mins P5, 8mins P6, 8mins

Ref. P1, 20mins P2, 23mins P3, 15mins

P4, 10mins P5, 10mins P6, 4mins

Fig. 11. User gallery. We asked 6 participants to reproduce 3 reference
shapes, shown in green. All participants completed these modeling tasks in
5 to 20 minutes and achieved a close match to the reference.

length for side length equalization. An example of regularization for
rectangular prism addition is shown in Fig. 9. The user can switch
off the auto-regularization to sketch arbitrary shapes.

Tuning operation parameters. As an advantage of inferring CAD
operations the users can edit the recovered parameters of a sketched
operation. We support three types of adjustments: creation of base
shapes, resolution of ambiguous results, and fine tuning for geo-
metric precision. First, users can select Boolean operations between
existing shape and the sketched primitive, which is useful for quickly
creating a base shape different from the plain box that the system
starts with. Second, users can switch between the union and dif-
ference options for add/subtract and sweep, which have inherent
ambiguous cases that require user specification (Sec. 5). Third, users
can fine-tune the geometric parameters, e.g., offset distances, circle
radius, etc. In particular for a swept shape, when tuning the dis-
tance between circles or the radius of a circle, we adjust the control
points of the profile cubic Bezier curve in proportion, defined by the
distance from a control point to the fixed base circle or rotational
axis, to preserve the overall shape of the swept geometry as much as
possible. An example of editing parameters of sequential operations
is shown in Fig. 10.

Auto-completion by symmetry. Symmetry is prevalent in CAD
models and can greatly ease user interaction. In our tool, the user
can take advantage of symmetry by reflecting a sketched primitive

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

164:10 • Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra

a

c

b

d e

f

g

h

i

j

k

l

Fig. 12. Result gallery. Various modeling sequences created during design sessions using Sketch2CAD. The corresponding protocol steps are shown in the
supplemental material. Please also refer to the supplementary video.

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

Sketch2CAD: Sequential CAD Modeling by Sketching in Context • 164:11

Fig. 13. Selected user modeling steps. Users envision different paths and
variations of operations for reaching the similar targets. The freehand inac-
curate sketches are robustly translated into intended operations.

shape [Peng et al. 2018] and its Boolean operation through the
selected cross section planes of the oriented bounding box of the
base shape, thus avoiding the need to repeat the sketch multiple
times manually. An example of auto-completion by symmetry is
shown in Fig. 9. More examples are shown in Figs. 1 and 12.

8 RESULTS AND DISCUSSION
With our tool, we have sketched several models of different com-
plexities. Examples are shown in Figs. 1 and 12, with the operation
sequences ranging from 2 to 11 steps, constructing CADmodels from
the simple bolts and nuts to the sophisticated mixer and cameras.
User evaluation also confirms the ease of sketching CAD models
with our approach (Sec. 8.1). We also validate the important design
choices in our framework through ablation tests in Sec. 8.2, and
discuss limitations and future work in Sec. 8.4. Interactive model-
ing sessions, complete user evaluation data, model mesh files and
sample protocol files can be found in the supplemental material.

Runtime. Tested on a desktop PCwith Intel(R) Core i9-9900 3.1GHz
CPU and NVidia RTX 2070 Super GPU, the network inference is in-
stantaneous, taking around 0.07s. Most time is spent on line search,
ranging from 0.01s to 2s, as the step involves repeated computa-
tion of distances between pixels and stroke points, although it can
be largely parallelized. To apply the recovered operator, a Boolean
mesh operation typically takes around 0.02s.

8.1 User evaluation
Wehave evaluated the ease of use of our system by asking 6 novices 1
to create the same 3 reference shapes. The target shapes, pre-modeled

1Due to requirement for GPU at inference time and restriction on lab access, we could
not test the system with a wider set of users.

by an expert user, were presented to participants as a static image
(Figure 11, green). Nevertheless, we do allow the participants to try
and explore with variations, so that novel and interesting deviations
from the references can be expected. All participants had little to
no experience in sketching nor in CAD modeling, and were given a
tutorial and a short practice session to get familiar with our system.

Figure 11 shows all models created by the participants, along with
their time to completion. On the one hand, all participants managed
to quickly produce models that closely match the reference shapes,
demonstrating the ability of our system to make CAD modeling
accessible to non-professionals. On the other hand, several partic-
ipants also decided to deviate from the reference, for instance by
adding a second part to the lens of the camera (P2), or by modeling
a curved handle for the hammer (P5). We see this unexpected be-
havior as a consequence of the joy and artistic freedom offered by
freehand sketching.

Figure 13 provides a selection of intermediate sketching steps per-
formed by the participants, which shows that our system is capable
of interpreting a wide variety of strokes representing similar shapes.
Note that all participants used a mouse to draw the input strokes,
which our system nevertheless translates into regularized CAD op-
erations. Several participants commented that they appreciated the
ability of our system to produce regular shapes from approximate
strokes, and that they prefer to let the modeling flow going rather
than revise what they had drawn. Although given the option, none
of the user turned off the stroke regularizer option in Sketch2CAD.
Participants gave an average rating of 4.75 on a 5-point Likert scale
when asked whether the sketches are properly translated to CAD
operations, and an average rating of 5 for ease of conception of
the modeling sequences. Complete user feedback and comments on
the ease of use of both the sequential modeling paradigm and our
prototype tool can be found in the supplemental material.

8.2 Ablation study
We validate two key components of our framework by ablation tests
evaluated on the segmentation tasks for all operations:

(1) Using local context versus using sketch only. The comparison
is shown in Table 1, where the ‘no context’ configuration
uses only the sketch map as network input. It is clear that

curve map

face map

no context primitive ours

Fig. 14. Comparing the ablation configurations by example. The real
bevel sketch is shown on the left. The ‘no context’ network fails to produce
any output that is above the map threshold (Sec. 5). The ‘primitive’ network
predicts a good curve map, but cannot distinguish the two front facing
polygons for base face map, which leads to the wrong base face detected by
counting (Sec. 5). Our full network gives almost perfect base face and curve
segmentation maps.

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

164:12 • Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra

Table 1. Ablation tests on using context as input and using operator com-
position to generate training data. Our full network using context as input
and trained on synthesized shapes composed by multiple operators has the
best accuracy for all segmentation tasks.

Operator Config Face IoU(%) Curve Acc. (%)

Extrude
no context 59.31 98.20
primitive 70.27 87.78
ours 91.78 98.04

Bevel
no context 3.23 50.24
primitive 73.27 93.88
ours 91.73 98.12

Add/Sub
no context 10.27 66.21
primitive 63.81 87.32
ours 78.26 93.54

Sweep
no context 7.34 48.90
primitive 68.72 90.10
ours 78.34 95.57

without the local context maps of depth and normal of exist-
ing shapes, the segmentation of both the base face and the
sketch curves becomes very difficult, with the base face IoU
frequently under 10%. In real user sketching, the networks
without context are barely usable (Fig. 14).

(2) Using shapes composed by multiple operations for network
training, versus using primitive shapes only. The configura-
tion of ‘primitive’ shown in Table 1 trains the regression net-
works on another set of 40k synthesized shapes and sketches,
which however only contains sequences of length 1 (Sec. 6).
The ‘primitive’ networks are then evaluated on the same 10k
testing dataset of different sequence lengths (Sec. 6) and com-
pared with our results. It is clear that the primitive networks
that do not see sufficiently complex combinations of opera-
tion cannot match the accuracy of our results, with base face
IoU lower for more than 10%. Real tests by user sketching
show the difference as well (Fig. 14).

In addition, we note that for the operator classification task, since
the four operations have quite different sketch patterns, the two
ablated configurations can achieve comparable performances as our
full network does, i.e., 99.80% of no context, 93.68% of primitive
and 99.79% of ours, since depth and normal maps do not play the
essential role in operation classification.

8.3 Robustness of network predictions
We test the robustness of network predictions under increasing lev-
els of sketch irregularity. While it is difficult to collect large amounts
of real user sketches with different levels of irregularity, we simulate
the variations by adding perturbations to clean sketches, as done for
the synthetic training data generation (Sec. 6). To be specific, we add
stronger stroke perturbations than the training data generation con-
figuration, i.e., 1.4% of the rendered image diagonal length for level
1(ours), 2.8% for level 2 and 4.1% for level 3 (see Fig. 15), and evalu-
ate how the pretrained model works under such out-of-distribution
settings. The statistics are reported in Table 2 and example sketches
are shown in Fig. 15. Quantitatively, as the noise increases, the
segmentation networks produce more inaccurate results, and the
same observation is found from the classification network (99.79%

Table 2. Quantitative robustness test of network predictions. Both the face
IoU and curve regression accuracy drop noticeably as the noise increase.

Operator Config Face IoU(%) Curve Acc. (%)

Extrude
level 1(ours) 91.78 98.04

level 2 89.59 96.28
level 3 82.58 91.69

Bevel
level 1(ours) 91.73 98.12

level 2 85.90 94.89
level 3 75.76 90.27

Add/Sub
level 1(ours) 78.26 93.54

level 2 77.09 92.02
level 3 73.88 86.08

Sweep
level 1(ours) 78.34 95.57

level 2 77.31 94.44
level 3 75.47 92.78

of level 1 (ours), 85.06% of level 2, and 53.20% of level 3, respectively).
Qualitatively, while the segmentation network was trained with a
low level of noise, it produces high-quality segmentation maps for
moderate noise (level 2). While high noise (level 3) degrades the
segmentation maps, the subsequent parameter fitting still yields a
reasonable shape.

8.4 Limitations and Future Work
In its current form, Sketch2CAD does not support drawing prim-
itives on curved faces (e.g., on the curved face of a cylinder). One
possibility would be to use NURBS as themodeling primitives, where
stitching face can be curved NURBS patches stopping at trim lines.
This would, however, require an extension of the underlying geome-
try engine used in our implementation. Another limitation involves
drawing small features (e.g., knobs, or screw threads). While we do
support zoom in our interface, having a library of small leaf-level
part features can be useful to instantiate, rather than build up from
scratch. Finally, we expect a certain amount of sketching ability
from the user. Porting our code to a tablet interface can further
lower this entry bar.

Our training data generation only considers geometric feasibility
rather than semantics, e.g., not all combinations of the operations are

level 1(ours)

level 2

level 3

strokes base map profile map offset map face map results
Fig. 15. Sketch perturbation examples and the corresponding net-
work predictions and fitting results. Each row shows an example of
a specific stroke perturbation level, while different columns show strokes,
network outputs and the final result after the parameter fitting.

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

Sketch2CAD: Sequential CAD Modeling by Sketching in Context • 164:13

Fig. 16. CAD-based sketching. The CAD models generated in our system
can subsequently be procedurally edited – subdivided and smoothed in this
example – and the resultant mesh be used to go back to a ‘sketch’ using NPR
rendering. This allows the user to perform operations that are much easier
in the CAD domain and then transition back to sketching, possibly with
camera view changes. This can be useful during ideation and prototyping
phases of product design.

functionally meaningful. On the other hand, in the scenario of CAD
modeling, there are strong semantics about the desired forms and
functions of the different parts and their composing operations for
common man-made objects. In the future, we plan to take this factor
into consideration and train our networks on more realistic data
that respect real world model distributions, e.g., by utilizing dataset
with semantic annotations like PartNet [Mo et al. 2019]. It will also
be interesting to train our network directly on CAD modeling trace
data, when available, to capture typical sequences of operations and
learn auto-complete routines (cf., [Peng et al. 2018]) directly from
user data. Finally, while in this work we explored sketch-to-CAD,
we can easily use the generated models, possibly after 3D based
editing and manipulations, to go back to the sketch domain and
thus enable powerful edits to sketching. Figure 16 shows an early
example of such a possible workflow.

9 CONCLUSION
The visceral and approximate nature of freehand sketching is often
considered to be in contradiction with the tediousness and rigidity of
3D modeling. Yet, we observed that industrial design sketching and
CAD modeling follow very similar workflows, where practitioners
create complex shapes as a sequence of simple sketching (resp.
modeling) operations. By identifying and parameterizing common
operations in the two domains, and training a deep neural network
to recognize and segment these operations, we offer an interactive
system capable of turning approximate sketches of human-made
objects into regular CAD models, as illustrated by our evaluation
with novices as well as the diversity of shapes we created with our
approach.

ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their valuable and
detailed suggestions, the user evaluation participants and Nathan
Carr, Yuxiao Guo, Zhiming Cui for the valuable discussions. The
work of Niloywas supported by ERCGrant (SmartGeometry 335373),
Google Faculty Award and gifts from Adobe, and the work of Adrien
was supported by ERC Starting Grant D3 (ERC-2016-STG 714221),
research and software donations from Adobe. Finally, Changjian Li
wants to thank, in particular, the endless and invaluable love and
supports from Huahua Guo over the tough time due to COVID-19.

REFERENCES
Autodesk. 2019a. 3ds Max. https://www.autodesk.com/products/3ds-max/overview
Autodesk. 2019b. Maya. https://www.autodesk.com/products/maya/overview
Autodesk. 2019. TinkerCAD. https://www.tinkercad.com/
Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis Savva, Angel X. Chang, and

Matthias Nießner. 2019. Scan2CAD: Learning CAD Model Alignment in RGB-D
Scans. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2008. ILoveSketch: as-natural-
as-possible sketching system for creating 3d curve models. In Proc. ACM UIST. ACM,
151–160.

Alexandra Bonnici, Alican Akman, Gabriel Calleja, Kenneth P Camilleri, Patrick Fehling,
Alfredo Ferreira, Florian Hermuth, Johann Habakuk Israel, Tom Landwehr, Juncheng
Liu, et al. 2019. Sketch-based interaction and modeling: where do we stand? AI
EDAM (2019), 1–19.

Frederic Cordier, Hyewon Seo, Mahmoud Melkemi, and Nickolas S. Sapidis. 2013.
Inferring Mirror Symmetric 3D Shapes from Sketches. Computer Aided Design 45, 2
(Feb. 2013), 301–311.

Chris De Paoli and Karan Singh. 2015. SecondSkin: Sketch-Based Construction of
Layered 3D Models. ACM Transactions on Graphics (Proc. SIGGRAPH) 34, 4, Article
126 (July 2015), 10 pages.

Johanna Delanoy, Mathieu Aubry, Phillip Isola, Alexei A Efros, and Adrien Bousseau.
2018. 3D Sketching using Multi-View Deep Volumetric Prediction. Proceedings of
the ACM on Computer Graphics and Interactive Techniques 1, 1 (2018), 21.

Jonathan D. Denning, William B. Kerr, and Fabio Pellacini. 2011. MeshFlow: Interactive
Visualization of Mesh Construction Sequences. ACM Trans. Graph. 30, 4, Article
Article 66 (July 2011), 8 pages.

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela
Rus, Armando Solar-Lezama, and Wojciech Matusik. 2018. InverseCSG: Automatic
Conversion of 3D Models to CSG Trees. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia 37, 6 (2018).

Koos Eissen and Roselien Steur. 2008. Sketching: Drawing Techniques for Product
Designers. Bis Publishers.

K. Eissen and R. Steur. 2011. Sketching: The Basics. BIS.
Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. 2018. Learn-

ing to infer graphics programs from hand-drawn images. In Advances in neural
information processing systems. 6059–6068.

Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. 2015. Line Drawing
Interpretation in a Multi-View Context. In Proceedings of the Conference on Computer
Vision and Pattern Recognition. IEEE.

Yotam Gingold, Takeo Igarashi, and Denis Zorin. 2009. Structured Annotations for
2D-to-3D Modeling. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 28, 5
(2009).

Yulia Gryaditskaya, Mark Sypesteyn, Jan Willem Hoftijzer, Sylvia Pont, Frédo Durand,
and Adrien Bousseau. 2019. OpenSketch: A Richly-Annotated Dataset of Product
Design Sketches. ACM Trans. Graph. (SIGGRAPH Asia) 38, 6 (November 2019).

Haibin Huang, Evangelos Kalogerakis, Ersin Yumer, and Radomir Mech. 2016. Shape
Synthesis from Sketches via Procedural Models and Convolutional Networks. IEEE
Transactions on Visualization and Computer Graphics (TVCG) 22, 10 (2016), 1.

Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 1999. Teddy: A Sketching
Interface for 3D Freeform Design. SIGGRAPH (1999).

Joaquim A Jorge, Nelson F Silva, and Tiago D Cardoso. 2003. GIDeS++: A Rapid
Prototyping Tool for Mould Design. In Proceedings of the Rapid Product Development
Event RDP.

Manfred Lau, Greg Saul, Jun Mitani, and Takeo Igarashi. 2010. Modeling-in-context:
user design of complementary objects with a single photo. In Proc. Sketch-Based
Interfaces and Modeling.

Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla Sheffer, and Wenping Wang. 2018.
Robust flow-guided neural prediction for sketch-based freeform surface modeling.
ACM Transaction on Graphics (Proc. SIGGRAPH Asia) (2018), 238.

Yuwei Li, Xi Luo, Youyi Zheng, Pengfei Xu, and Hongbo Fu. 2017. SweepCanvas:
Sketch-Based 3D Prototyping on an RGB-D Image. In Proc. ACM Symposium on User
Interface Software and Technology (UIST) (UIST ’17).

H Lipson and M Shpitalni. 1996. Optimization-based reconstruction of a 3D object from
a single freehand line drawing. Computer-Aided Design 28, 8 (1996), 651–663.

Zhaoliang Lun, Matheus Gadelha, Evangelos Kalogerakis, Subhransu Maji, and Rui
Wang. 2017. 3D shape reconstruction from sketches via multi-view convolutional
networks. In IEEE International Conference on 3D Vision (3DV). 67–77.

KaichunMo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and
Hao Su. 2019. PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical
Part-Level 3D Object Understanding. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Fernando Naya, Joaquim Jorge, Julián Conesa, Manuel Contero, and José María Gomis.
2002. Direct modeling: from sketches to 3D models. In Proceedings of the 1st Ibero-
American Symposium in Computer Graphics SIACG. 109–117.

Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. 2007. FiberMesh:
designing freeform surfaces with 3D curves. ACM Transactions on Graphics (Proc.

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/maya/overview
https://www.tinkercad.com/

164:14 • Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra

SIGGRAPH) 26, Article 41 (2007). Issue 3.
Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien

Bousseau. 2016. Interactive Sketching of Urban Procedural Models. ACM Trans.
Graph. (SIGGRAPH) 35, 4, Article 130 (July 2016), 11 pages.

Patrick Paczkowski, Min H. Kim, Yann Morvan, Julie Dorsey, Holly Rushmeier, and
Carol O’Sullivan. 2011. Insitu: Sketching Architectural Designs in Context. ACM
Transactions on Graphics 30, 6 (2011).

Mengqi Peng, Jun Xing, and Li-Yi Wei. 2018. Autocomplete 3D sculpting. ACM
Transactions on Graphics (TOG) 37, 4 (2018), 1–15.

A. Pipes. 2007. Drawing for designers. Laurence King.
Alec Rivers, Frédo Durand, and Takeo Igarashi. 2010. 3D Modeling with Silhouettes.

ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4, Article 109 (2010), 8 pages.
Robert McNeel & Associates. 2019. Rhinoceros. https://www.rhino3d.com/
Ryan Schmidt, Azam Khan, Karan Singh, and Gord Kurtenbach. 2009. Analytic drawing

of 3D scaffolds. In ACM Transactions on Graphics (Proc. SIGGRAPH Asia), Vol. 28.
ACM, 149.

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji.
2018. CSGNet: Neural Shape Parser for Constructive Solid Geometry. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Alex Shtof, Alexander Agathos, Yotam Gingold, Ariel Shamir, and Daniel Cohen-Or.
2013. Geosemantic Snapping for Sketch-Based Modeling. Computer Graphics Forum
32, 2 (2013), 245–253.

Wanchao Su, Dong Du, Xin Yang, Shizhe Zhou, and Hongbo Fu. 2018. Interactive
Sketch-Based Normal Map Generation with Deep Neural Networks. Proceedings of
the ACM on Computer Graphics and Interactive Techniques 1, 1 (2018).

The CGAL Project. 2020. CGAL User and Reference Manual (5.0.2 ed.). CGAL Editorial
Board. https://doc.cgal.org/5.0.2/Manual/packages.html

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B.
Tenenbaum, and Jiajun Wu. 2019. Learning to Infer and Execute 3D Shape Programs.
In International Conference on Learning Representations.

Trimble. 2019. SketchUp. https://www.sketchup.com/
Yingze Wang, Yu Chen, Jianzhuang Liu, and Xiaoou Tang. 2009. 3D reconstruction of

curved objects from single 2D line drawings. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James McCrae, and Karan
Singh. 2014. True2Form: 3D curve networks from 2D sketches via selective regular-
ization. ACM Transactions on Graphics (Proc. SIGGRAPH) 33, 4 (2014).

Pengfei Xu, Hongbo Fu, Youyi Zheng, Karan Singh, Hui Huang, and Chiew-Lan Tai.
2019. Model-Guided 3D Sketching. IEEE Transactions on Visualization and Computer
Graphics 25, 10 (2019), 2927–2939.

Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. 1996. SKETCH: An
Interface for Sketching 3D Scenes. In Proceedings of SIGGRAPH (Computer Graphics
Proceedings, Annual Conference Series). 163–170.

Youyi Zheng, Han Liu, Julie Dorsey, and Niloy Mitra. 2016. SMART CANVAS : Context-
inferred Interpretation of Sketches for Preparatory Design Studies. (2016).

ACM Trans. Graph., Vol. 39, No. 6, Article 164. Publication date: December 2020.

https://www.rhino3d.com/
https://doc.cgal.org/5.0.2/Manual/packages.html
https://www.sketchup.com/

	Abstract
	1 Introduction
	2 Related Work
	3 Method overview
	4 The Operators
	5 Context Driven Sketch Interpretation
	5.1 Operator classification
	5.2 Operator regression

	6 Training data generation
	7 The Modeling System
	8 Results and Discussion
	8.1 User evaluation
	8.2 Ablation study
	8.3 Robustness of network predictions
	8.4 Limitations and Future Work

	9 Conclusion
	Acknowledgments
	References

