

Neural Surface Maps

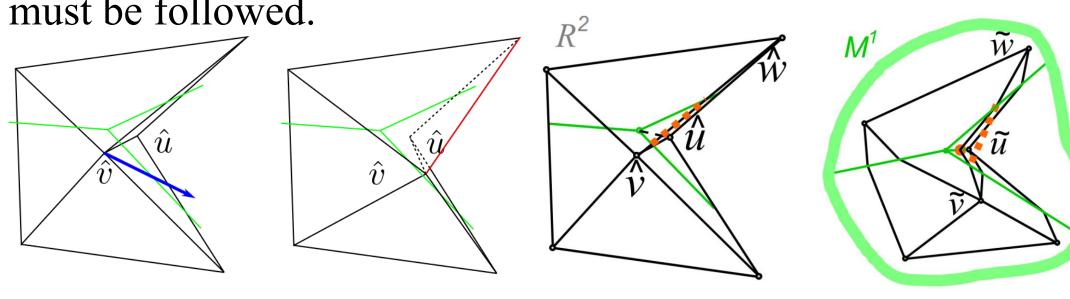
Noam Aigerman² Niloy J. Mitra^{1,2} Vladimir Kim² Luca Morreale¹ ¹University College London ²Adobe Research

Motivation:

Meshes are the de-facto surface representation.

Manipulation is non-trivial due to discriteness and combinatorial nature.

Intricate rules must be followed.



Method:

We propose to encode surface maps with neural networks.

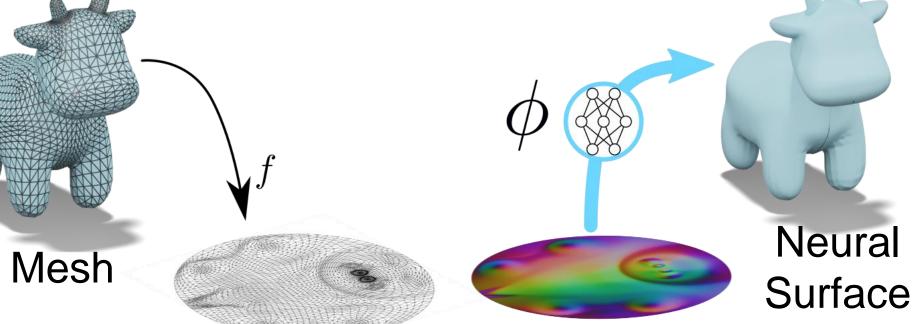
Why? Neural networks:

- are continuous and differentiable
- can be composed on one another

We define surfaces via atlases.

Neural Surface $\phi: \mathbb{R}^2 \to \mathbb{R}^3$ by overfitting a an altas $f: \mathbb{R}^3 \to \mathbb{R}^2$ Minimize:

- surface deviation
- normals deviation



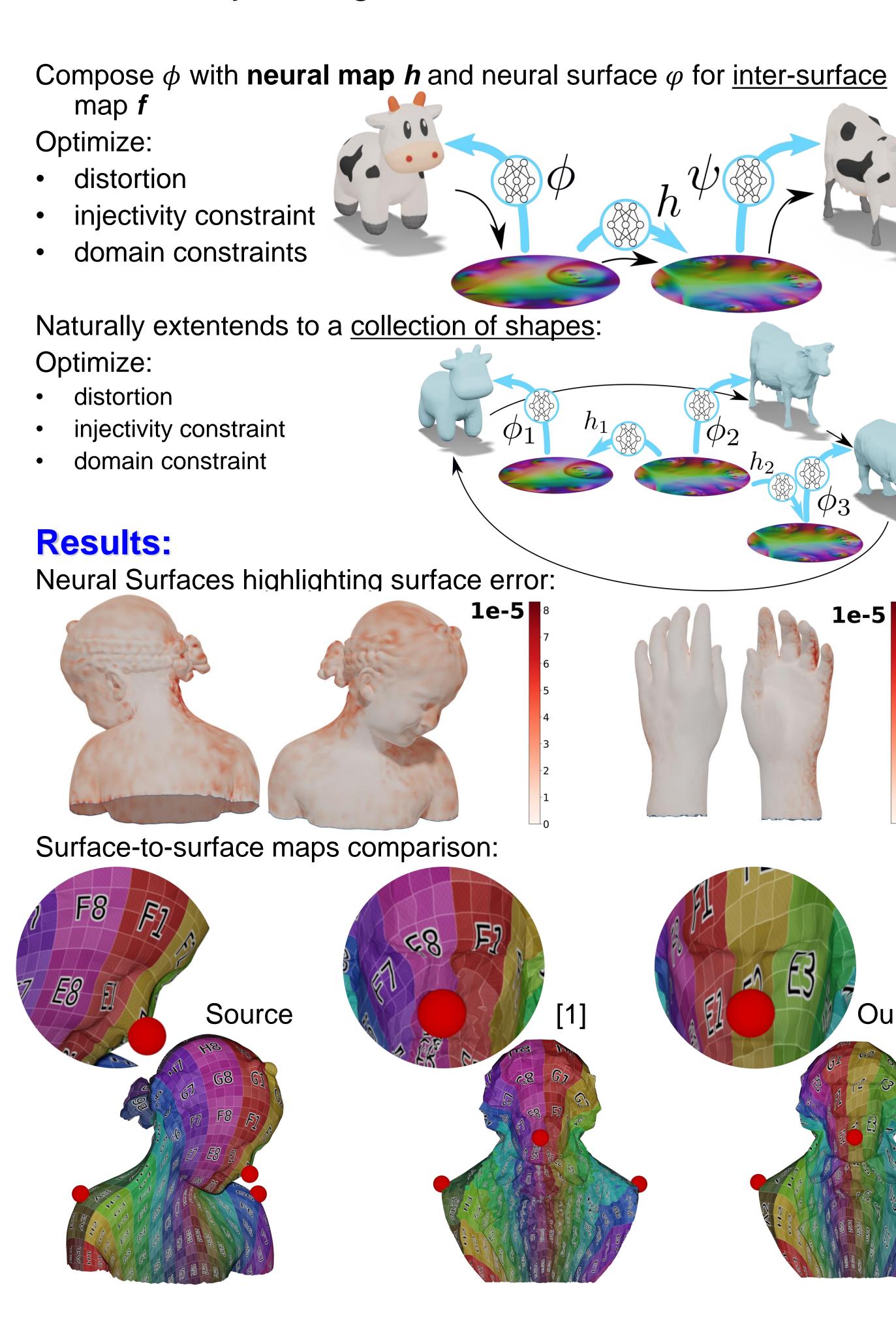
Differentiable objectives relating surfaces, e.g., distortion, can be optimized in trivial manner.

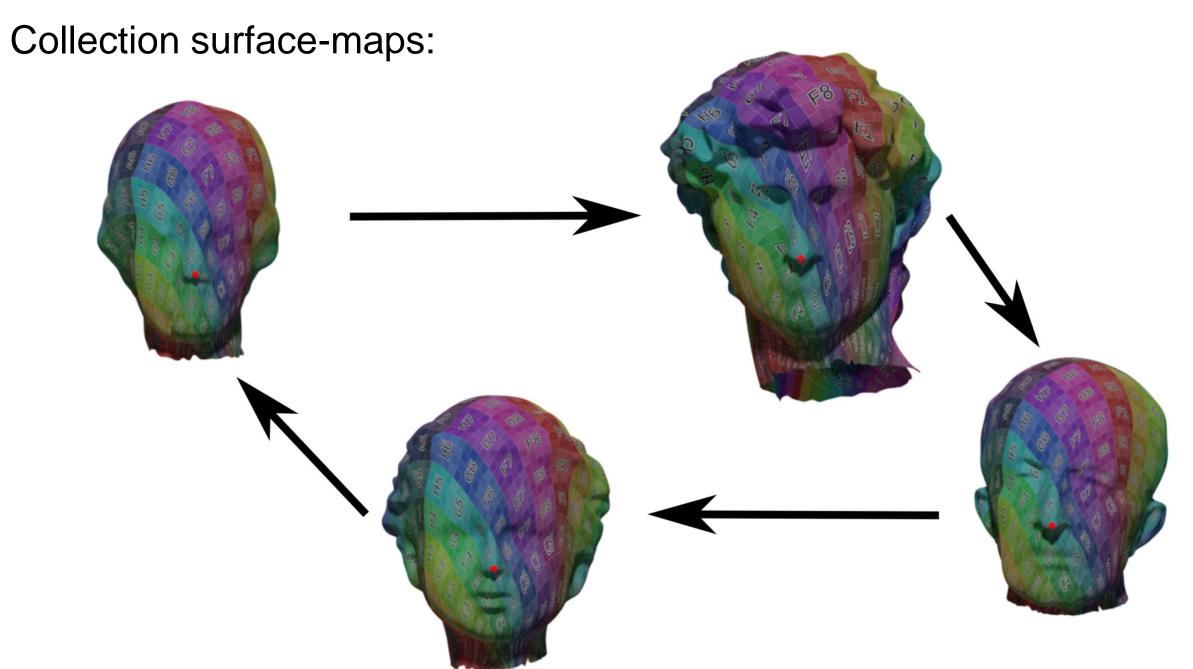
This simplifies a range of geometry processing tasks.

Compose ϕ with **neural map** h to achieve <u>parametrization</u> map fOptimize end-to-end distortion:

Symmetric Dirichlet

Conformal distortion





Surface-to-Surface map properties:

	Continuous	Injective	End-to-end optimization
unctional Maps[2]	×	×	✓
Common Domain	✓	✓	×
leural Surface Maps	✓	✓	✓

Conclusion:

- Novel surface representaion
- Natural composition with maps
- Limited to disk topology and no partial cases
- Unable to handle partial maps
- Do not scale to large datasets

References:

Ours

- [1] Schreiner et al. Inter-surface mapping 2004
- [2] Ovsjanikov et al. Functional Maps 2012

Links: Project page

